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Introduction

Suppose you are hungry and you are not in the mood to spend hours in the kitchen.
You also want to have the idea that you eat fresh vegetables. What would you do?
You will buy a pizza.

But there is a problem. When you divided the pizza in slices and picked up a piece,
all cheese and salami will fall to the ground due to gravity. This is shown in Figure
1a. It turns out that when you bend the back of the pizza slice, like in Figure 1b you
prevent the point from tipping down [2].1

(a) A slice of pizza where the topping will
fall of.

(b) The correct way to hold a pizza slice.
Bend the back a litte bit.

Figure 1: How to hold a pizza.

To describe this problem mathematically, we see a pizza as a 2 dimensional surface.
For surfaces we can define a notion of curvature that it preserved under isometric
immersions. Therefore, both slices in Figure 1 have the same curvature. But when
the point in Figure 1b bend down, the curvature – and thus the metric – must change.
This only happens when the pizza is torn apart.

The main result in this thesis is the Gauss-Bonnet theorem. It states that the integral
of the Gaussian curvature K over a surface Σ only depends on the topology of the
surface. More precisely, it states that∫

Σ

KdA = 2πχ

1This will only work with Italian pizza, because these are well baked and don’t have stretchy
dough.
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where χ is the Euler characteristic. This is interesting because the Gaussian curvature
is a number that only depends on the metric and χ is a number that is purely topo-
logical in origin.

We will define another type of curvature, namely the geodesic curvature, kg for the
boundary of a surface. For surfaces with boundary the Gauss-Bonnet theorem states
that ∫

Σ

KdA+

∫
∂Σ

kgds = 2πχ.

In chapter 1 we will give the definition of a surface and recall some definitions from
differential geometry. In chapter 2 we will define the notion of curvature. We will start
with a geometric intuitive definition of curvature in R3 and we will extend to general
smooth manifolds with Riemannian metric. We will also prove the ’Pizza theorem’
stated above.

In chapter 3 we will investigate what happens to the curvature when we do a change
of coordinates. It will turn out that it is related to another topological property called
the index. In this chapter we will prove the Poincare-Hopf theorem which states that
the sum of the indices of a vector field is equal to the Euler characteristic.

At that point we have all the ingredients to prove the Gauss-Bonnet theorem for
manifolds without boundary. To prove the Gauss-Bonnet theorem for surfaces with
boundary we will define the geodesic curvature kg in chapter 4. In chapter 6 we will
finally prove the Gauss-Bonnet theorem.
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1 Preliminary definitions

The Gauss-Bonnet theorem relates the curvature of a surface to a topological property
called the Euler characteristic. To properly state this theorem we have to first define
what a surface is. In short, it is a 2-manifold (with or without boundary) which is
equipped with a Riemannian metric. Readers familiar with Riemannian metrics and
manifolds can skip this chapter.

1.1 An introduction to surfaces

In this section we will introduce the notion of surface. If we think about surfaces we
think about something that is 2-dimensional, though doesn’t necessary have to be
flat. We can achieve this by requiring that a surface must be topological manifold of
dimension 2.

Definition 1.1 (Lee [8], pg. 3). Suppose M is a topological space. We say that
M is a topological n-manifold of topological manifold of dimension n if it has the
following properties:

1. M is a Hausdorff space.

2. M is second countable.

3. M is locally Euclidean of dimension n; That is, each point p ∈ M has a
neighborhood which is homeomorphic to Rn.

Notice that when we have manifolds with boundary we loosen the third property such
that points must have a neighborhood which is homeomorphic to Rn or Rn+ : {x ∈
Rn | xn ≥ 0}

In this thesis we will do calculus on surfaces and so must be there some notion of
differentiability. The usual way to define a differentiable structure is to check that
compositions of local homeomorphisms are differentable. The following definitions
state this more formally.

Definition 1.2 (Lee [8], pg. 4). Let M be a topological manifold of dimension n. A
coordinate chart φ is a homeomorphism between the open set U ⊂ M to a open
subset in Rn. a coordinate chart is centered at p ∈M when φ(p) = 0.

Definition 1.3 (Lee [8], pg. 12-13). A Ck-structure or differential structure on a
topological n-manifold is a collection of charts {(φα, Uα) |φα : Uα →M,α ∈ A} such
that
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1.
⋃
α∈α Uα = M

2. For α, β ∈ A, φα ◦ φ−1
β is Ck on the Uα ∩ Uβ.

3. The collection of charts is maximal with relation to the second property. This
means that if φ is a chart such that the composition between φ and all the
charts in the collection is continuous differentiable, then φ is in the collection
of charts.

Definition 1.4 (Lee [8], pg. 13). A Ck-manifold of dimension n is a topological
n-manifold endowed with a Ck-structure F .

Recall that we can always extend a Ck-structure to a maximal structure [8, Prop.
1.17, pg. 13]. Therefore, the third property isn’t an important one.

From the concept of differentiability, we get tangent vectors. Recall that the tangent
space TpM of M at p is the space of all paths through p with an equivalence relation
such that paths which have the same speed, are in the same equivalence class [7, pg.
15]. Recall that tangent spaces are n-dimensional vector spaces.

On Rn we have the notion of inner products. There is a generalization on manifolds,
namely the Riemannian metric:

Definition 1.5 (Lee [7], pg. 23). A Riemannian metric on a smooth manifold M is
a 2-tensor field g : TM × TM → R that has the following two properties:

1. Symmetric: g(X, Y ) = g(Y,X)

2. Positive definitive: g(X,X) > 0 if X 6= 0

Remark: Usually we denote g(X, Y ) by 〈X, Y 〉. This is because the default Rieman-
nian metric of Rn is just the normal inner product, so we can interpret g as an inner
product.

In this thesis a surface is defined as follows:

Definition 1.6. A surface is a smooth 2-manifold (with or without boundary) equipped
with a Riemannian metric g.
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2 Gaussian curvature

In this chapter we will define the first type of curvature on a surface: the Gaussian
curvature. We start by defining the curvature of an arc. Next we give a geometric
definition of the Gaussian curvature. After that we reformulate the curvature as the
determinant of a special matrix. When we arrive at this point, we can calculate the
Gaussian curvature, but we are restricted to the case when our surface is immersed in
R3.

To solve this problem we stop and introduce the concept of frames. We will then
find relations called the structure relations. From this we can describe the Gaussian
curvature using the notion of frames. We then also find that the curvature doesn’t
depend on how a surface is embedded, but it only depends on the metric of the
tangent space. At last we can define the Gaussian curvature without using any notion
of ambient space.

2.1 The geometric definition of curvature

The next topic we will cover is the notion of curvature. Intuitively curvature measures
how much a surface moves away from the tangent plane. You could define the curva-
ture by patching the holes and test if it is usable as coffee-cup. For example Figure
2a would make a lot of mess and Figure 2c would make drinking really challenging,
but the half-sphere in Figure 2b won’t spill a single droplet. To give a rigorous math-
ematical definition of curvature. First we will define the curvature of a path. Next
we will define curvature for surfaces embedded in R3. Our goal is to generalize it for
Riemannian manifolds.

(a) A saddle parametrized
by z = y2 − x2.

(b) A Cup parametrized by
z = −

√
1− y2 − x2.

(c) A Plane parametrized
by z = 0.

Figure 2: Some samples of curved surfaces.
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2.1.1 Surfaces and paths in R3

To define curvature on surfaces we first need to define the curvature of a path C ⊂ R3.

Definition 2.1. A regular path on a surface Σ is an immersion of the open interval
in Σ, γ : I → Σ.

Let γ : I → C be a regular path in R3. We want to measure how fast the path moves
away from the tangent plane at some t0 ∈ I. Note that γ′(t0) will be in the tangent
plane, so this will not measure the curvature. The length of the second derivative will
be a good candidate. But by the chain rule, the second derivative is dependent on
the choice of parameterization. Luckily, there is a natural way to parameterize a path
such that we can get a well defined notion of curvature.

Lemma 2.2. Every parametrization γ : I → R can be changed to a parametrization
by arc length γ̃ : J → Σ. That is, when s̃(t) denotes the arc length of the path
between γ̃(t) and a fixed point γ̃(t0), then s̃(t) = t− t0.

Proof: Given t ∈ I we define the arc length of a path γ from the point t0 by
s(t) =

∫ t
t0
|γ′(τ)|dτ . For a continuous path the integral is well defined. Note that

s(t) is a strict increasing function. So s(t) has an inverse. Let γ̃ = γ ◦ s−1. This has

the same image as γ, because s is bijective. Also, note that |γ̃′(x)| = |γ′(s−1(x))|
|γ′(s−1(x))| = 1.

Therefore, it follows that s̃(t) =
∫ t
t0
|γ̃(τ)|dτ = t− t0. �

From the fact that |γ̃′(x)| = 1 follows that ∂
∂x
〈γ̃′(x), γ̃′(x)〉 = 0. This is equal to

2〈γ̃′′(x), γ̃′(x)〉 = 0. Therefore, we can always change a regular path such that the
second derivative is orthogonal to the tangent plane without changing the image. Now
we have everything to define the curvature of a regular path.

Definition 2.3. Let Σ be a surface embedded in R3. Let γ : I → Σ be a regular path
parametrized by arc length. We call the number k(s) = |γ′′(s)| the curvature of γ
at s.

The curvature of a path is not enough to measure the rate a surface moves away
from the tangent plane. Look at Figure 3. In Figure 3a the second derivative is in
the tangent plane. It this is useless for the definition of curvature. In Figure 3b it is
orthogonal to the tangent plane. We would like that all second derivatives are of this
form. To solve this we need to use the fact that we are embedding in R3, because
now we can define the normal vector.
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(a) The curve of a circle in a plane. The sec-
ond derivative lies inside the tangent plane.

(b) The curve of a circle in a sphere. The
second derivative lies orthogonal to the tan-
gent plane.

Figure 3: Some samples of curved surfaces.

We define the normal N of the tangent plane as follows: given a locally orientable
surface Σ. Given a basis ∂

∂x
, ∂
∂y

of the tangent space at a point p ∈ Σ, we can compute

the vector product ∂
∂x
× ∂

∂y
. This is normal to the tangent space and depends smooth

on the coordinates. Rescale this vector so that the length is equal to 1. Notice that
the orientation is induced from the orientation of the chart. When the orientation
induced by the chart is different than the orientation of the surface, we multiply by
−1. This map N : Σ → S2 ⊂ R3 gives the normal at each point of the surface and
we call it the Gauss map.

When we project the second derivative to the normal space, we can measure how fast
a path on a surface moves away from the tangent plane.

Lemma 2.4. Let γ : I → Σbe a regular path parameterized by arc length passing
through γ(t0) = p and let N be the Gauss map. We define the normal curvature
kn of the path γ at p as

kn = 〈N, γ′′(t0)〉.

In particular if two paths through p have the same speed, then they have the same
normal curvature at p.
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Proof: Suppose that there are 2 regular paths parameterized by arc length. γ : I →
Σ, γ̃ : J → Σ such that for some point p ∈ Σ, γ(t0) = γ̃(t̃0) = p and γ′(t0) = γ̃′(t̃0).
Because the normal is orthogonal to the tangent space the following are equal to zero:

d

ds

∣∣
s=t0
〈N(γ(s)), γ′(s)〉 =

d

ds

∣∣
s=t0
〈N(γ̃(s)), γ̃′(s)〉

〈dNγ′(t0), γ′(t0)〉+ 〈N(γ(t0)), γ′′(t0)〉 =〈dNγ̃′(t0), γ̃′(t0)〉+ 〈N(γ̃(t0)), γ̃′′(t0)〉
〈N(γ(t0)), γ′′(t0)〉 =〈N(γ̃(t0)), γ̃′′(t0)〉

kn(γ(t0)) =kn(γ̃(t0)) �

Figure 4: A graphical illustration of the construction
of the normal curvature kn

This result was first proven by
Jean Baptiste Meusnier in 1785
and is called the Meusnier Theo-
rem [10]. Also, from this lemma
follows that kn can be written as
〈dNγ′(t0), γ′(t0)〉.

Example: Let us look back
at Figure 3. In Figure 3a
the second derivative lies in-
side the tangent plane and
is perpendicular to the nor-
mal. In this situation kn is
0. In Figure 3b the sec-
ond derivative is parallel to
the normal. Now kn >
0.
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2.1.2 The curvature at a point on a surface

In this section we will define the curvature at a point on a surface. Recall that the
normal curvature in the direction v ∈ TpΣ is defined as kn = 〈dNv, v〉. We will
examine the properties of the map dN . From this we will develop the tools required
to define the Gaussian curvature.

Lemma 2.5. For surfaces embedded in R3, the map dN at p ∈ Σ is a map whose
domain and codomain is TpΣ

Proof: By definition the domain of N at p is the tangent space at p. Notice that in
R3 the tangent space is the vector space which is normal to the Gauss map. In other
words:

TpΣ = {v ∈ R3 : 〈N(p), v〉 = 0}.
By definition of the Gauss map, the codomain of N is the sphere S2 ⊂ R3. Thus,
the codomain of dN is TN(p)S

2. When we use the fact that the tangent plane of the
sphere is orthogonal to the line through the origin, we get that

Im(dNp) ⊆ TN(p)S
2 = {v ∈ R3 : 〈N(p), v〉 = 0}.

Because both spaces are the same we get that dNp : TpΣ→ TpΣ. �

Definition 2.6 (do Carmo [5], pg. 82). Suppose that ι : Σ → Rn is an immersion.
We say that 〈·, ·〉p is a metric induced by the immersion ι when it is equal to the
pullback of the metric in Rn.

Lemma 2.7. The map dN is a symmetric linear map.

Proof: Pick a parametrization of our surface φ : U ⊂ R2 → Σ ⊂ R3 with φ(0, 0) = p
for some point p ∈ Σ. Recall that ∂φ

∂x

∣∣
(0,0)

and ∂φ
∂y

∣∣
(0,0)

is form basis of TpΣ. Because

N(p) is normal to the tangent space the following holds:

〈N(φ(x, y)),
∂φ

∂x
〉 = 〈N(φ(x, y)),

∂φ

∂y
〉 = 0

Differentiating the first part with respect to x and the second part with respect to y
at (0, 0) we get the following result:

∂

∂y

∣∣
(0,0)
〈N(φ(x, y)),

∂φ

∂x
〉 =

∂

∂x

∣∣
(0,0)
〈N(φ(x, y)),

∂φ

∂y
〉

〈dNp
∂φ

∂y
,
∂φ

∂x
〉+ 〈N(p),

∂2φ

∂x∂y
〉 =〈dNp

∂φ

∂x
,
∂φ

∂y
〉+ 〈N(p),

∂2φ

∂x∂y
〉

12
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From this we can conclude that 〈dNp
∂
∂y
, ∂
∂x
〉 = 〈dNp

∂
∂x
, ∂
∂y
〉. For arbitrary vectors in

v, w ∈ TpΣ where v = v1
∂
∂x

+ v2
∂
∂y

and w = w1
∂
∂x

+ w2
∂
∂y

, we can now check if dN
is symmetric:

〈dNv,w〉 =〈dN(v1
∂

∂x
+ v2

∂

∂y
), (w1

∂

∂x
+ w2

∂

∂y
)〉

=v1w1〈dN
∂

∂x
,
∂

∂x
〉+ v1w2〈dN

∂

∂x
,
∂

∂y
〉+ v2w1〈dN

∂

∂y
,
∂

∂x
〉+ v2w2〈dN

∂

∂y
,
∂

∂y
〉

=v1w1〈dN
∂

∂x
,
∂

∂x
〉+ v1w2〈dN

∂

∂y
,
∂

∂x
〉+ v2w1〈dN

∂

∂x
,
∂

∂y
〉+ v2w2〈dN

∂

∂y
,
∂

∂y
〉

=〈dN(w1
∂

∂x
+ w2

∂

∂y
), (v1

∂

∂x
+ v2

∂

∂y
)〉

=〈dNw, v〉

From this we can conclude the lemma. �

Because the map dN is symmetric, dN has eigenvalues. Next we will show that there
is a correspondence between the extreme values of kn and the eigenvalues of dN :

Lemma 2.8. The map kn(v) is a symmetric quadratic map on the circle which has
either four critical points: 2 identical maxima and 2 minima or is constant.

Proof: Let p1 ∈ R be the maximum of kn at a given point. Let v1 be a unit vector
in TpΣ such that kn(v1) = p1. Let v2 be any unit vector normal to v1. Define
λ2 = kn(v2). Because {v1, v2} is an orthonormal basis, we can describe any vector on
the circle using its angle:

u(ϑ) = cosϑv1 + sinϑv2

Notice that u(0) = v1 is a global maximum of kn. Taking the derivative with respect
to ϑ at ϑ = 0 must yield zero. Differentiation kn gives:

0 =
∂

∂ϑ

∣∣
0
kn(u(ϑ))

=− ∂

∂ϑ

∣∣
0
〈dNu(ϑ), u(ϑ)〉

=− ∂

∂ϑ

∣∣
0
〈dN cosϑv1 + sinϑv2, cosϑv1 + sinϑv2〉

=− ∂

∂ϑ

∣∣
0

(
p1 cos2 ϑ+ 2 cosϑ sinϑ〈dNv1, v2〉+ λ2 sin2 ϑ

)
=− 2〈dNv1, v2〉
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We can conclude from this that 〈dNv1, v2〉 = 0. Straight forward calculation of kn
yields:

kn(u(ϑ)) =〈dNu(ϑ), u(ϑ)〉
=〈dN(cosϑv1 + sinϑv2), cosϑv1 + sinϑv2)〉
= cos2 ϑ〈dNv1, v1〉+ sin2 ϑ〈dNv2, v2〉
=p1 cos2 ϑ+ λ2 sin2 ϑ

Therefore, kn is a quadratic map. To find the extreme values of kn we will differentiate
kn(u(ϑ)) with respect to ϑ.

d

dϑ
kn(u(ϑ)) =− 2p1 cosϑ sinϑ+ λ2 cosϑ sinϑ

=(λ2 − p1) sin 2ϑ

This is equal to zero when λ2 = p1 or when ϑ is a multiple of π
2

. When p1 = λ2, the
map is constant. When p1 6= λ2, extreme values are twice p1, or twice λ2. Because we
assumed that p1 is the global maximum and they are not equal, λ2 must be a global
minimum. �

Corollary 2.9. The critical points of the map kn on the circle are eigenvectors of dN
and the corresponding eigenvalues are the maxima and minima of kn.

Proof: We use the variables of the previous lemma. The critical points of kn are

kn(±v1) =p1

kn(±v2) =λ2.

Because {v1, v2} is an orthonormal basis, we can write dN as

dNw = 〈dNw, v1〉v1 + 〈dNw, v2〉v2.

In the cases w = v1 and w = v2, we have

dNv1 = p1v1 + 〈dNv1, v2〉v2

dNv2 = 〈dNv1, v2〉v1 + λ2v2.

From 〈dNv1, v2〉 = 0 it follows that dNv1 = p1v1 and dNv2 = λ2v2. �

Definition 2.10. The eigenvalues of dN are called the principal curvatures.

14
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We have shown that p1 and λ2 are eigenvalues of dN . Therefore, dN in the eigenbasis
is equal to a diagonal matrix with principal curvatures on the diagonal. The determi-
nant of dN gives thus information about the curvature at a point p ∈ Σ. Therefore,
we define the curvature at a point as follows:

Definition 2.11. Let Σ be a surface immersed in R3 and let p ∈ Σ. Let N be the
Gauss map. Then the Gaussian curvature K is defined as

K = det dN

which is independent of basis.

Note that this definition does not depend on the orientation of Σ, because when the
orientation change, both principal curvatures change sign and so the minus signs can-
cel each other.

Definition 2.12. A point in an embedded surface is called elliptic, parabolic or
hyperbolic if the Gaussian curvature is respectively positive, negative or zero. When
the normal curvatures are zero in each direction, we call such point planar.

Example: In Figure 2a the Gaussian curvature at every point is negative: if we take a
path along the x-axis, we get a downward pointing path. Thus, the second derivative
is downward pointing. In the y-direction, we only get upward pointing paths. There-
fore, the principal curvatures have opposite sign and so is this surface hyperbolic at
each point.

Example: In Figure 2b all paths lay at the same side of the tangent plane. Therefore,
all normal curves has the same sign and so is the Gaussian curvature positive. Thus
this surface is elliptic at each point. Notice that this example is a subset of S2. From
straightforward calculation can be shown that the Gaussian curvature for the sphere
is equal to 1.

Example: In Figure 2c all the second derivatives lie inside the plane. In this case
the normal curvatures is zero in all directions and so is the plane ’planar’. Another
example of a planar point is the center of Figure 5a. Note that in Figure 5b the
Gaussian curvature is zero, but kn is non-zero along the x-axis. This point is thus a
parabolic, but not a planar point.

15
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(a) The parametrization of z = x3. Note
that the normal curvature at the centre is
zero in all directions.

(b) The parametrization of z = x2. The
Gaussian curvature at the centre is zero, but
the normal curvature of the path along the
x-axis is non-zero.

Figure 5: Some examples of surfaces where K = 0 at the centre. In the first figure
the normal curvature at (0, 0, 0) is zero in each direction, but in the second figure the
normal curvature in the x-direction is non-zero.

2.2 Intermezzo: orthonormal frames

Before we continue, we will introduce the notion of frames. The proofs and definitions
of this chapter comes from Lee in [8] and can be skipped if the reader is already familiar
with this topic. Next section we will find relations from which the Gaussian curvature
can be recovered.

Definition 2.13 (Lee [8], pg. 174). A vector field is a smooth map X : M → TM
such that π ◦X is the identity function.

Just as in linear algebra we can define a basis on the tangent bundle. Let U ⊆M be
open and let (X1, . . . , Xk) be an ordered set of vector fields on U . If (X1, . . . , Xk)
forms a basis for TpM for all p ∈ U , then we say that (X1, . . . , Xk) is a local frame
of M . If U = M , we speak of a global frame.

Some examples of (local) frames are:

1. The standard basis of Rn.

16
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2. The induced basis { ∂
∂xi
} of TpM . This frame is called the coordinate frame.

In the case we have a Riemannian metric on our manifold we can also define orthonor-
mal frames:

Definition 2.14 (Lee [8], pg. 178). We say that a local frame (e1, . . . en) for M on
an open subset U ⊆ M is an orthonormal frame if it is an orthonormal basis at
each point p ∈ U .

Lemma 2.15 ([8] Lemma 8.13, page 179). For every smooth manifold there always
exists a local orthonormal frame in a neighborhood of p ∈M .

Proof: We will use the Gramm-Schmidt procedure: Choose an arbitrary a local frame
(X1, . . . , Xn) around p ∈ M defined on the open U ⊆ M . Take for example the
coordinate frame. We will use induction. Suppose our frame consists only of one
vector field X1. Then define the smooth vector field

e1 =
X1

‖X1‖p
Notice that this is an orthonormal frame on an 1-manifold. Now suppose we have a
local frame (X1, · · ·Xk+1) and suppose that we found (e1, . . . , ek) independent vector
fields such that span(X1

∣∣
p
, . . . Xk

∣∣
p
) = span(e1

∣∣
p
, . . . , ek

∣∣
p
) for all p ∈ U Define the

vector field ek+1 as follows:

ek+1

∣∣
p

=
Xk+1

∣∣
p
−
∑k

i=1 αi(p)ei
∣∣
p

‖Xk+1

∣∣
p
−
∑k

i=1 αi(p)ei
∣∣
p
‖p

Here αi is a real valued differentiable function defined on the manifold, which is
to be defined. Because Xk+1 is independent of span(X1

∣∣
p
, . . . Xk

∣∣
p
), so is ek+1 to

span(e1

∣∣
p
, . . . ek

∣∣
p
). From this it follows that the denominator is nowhere zero. Thus

ek+1 is well defined. We also know that 〈ek+1, ek+1〉 = 1. We only have to pick αi
such that ek+1 is tangent to all other ei. Using the given Riemannian metric we can
calculate that for l ≤ k

〈ek+1|p, el|p〉p =
1

‖. . .‖p

(
〈Xk+1|p, el|p〉p −

k∑
i=0

αi〈ei|p, el|p〉p

)
= 0.

Notice that 〈ei|p, el|p〉p = δi,l. This simplifies to

〈Xk+1|p, el|p〉p − αl = 0

When we pick αi = 〈Xk+1, ei〉, we have found an local orthonormal frame for our
manifold. �
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2.3 The Gaussian curvature is independent of the normal vec-
tor

In this paragraph we will find an intrinsic expression of K, i.e. an expression which
only depend on the induced Riemannian metric on the tangent plane. We will use a
technique which is called the method of moving frames [13]. We will follow do Carmo
[5, chapter 5] and use Lee in [7] for the notion of connections.

In calculus, we had a notion of directional derivative. Recall that the directional
derivative in Rn is a bilinear function which has 2 arguments: a direction and a
multilinear map to differentiate. Notice that D : Γ(Rn) × Γ(Rn) → Γ(Rn) can be
rewritten as D : Γ(Rn)→ (Γ(Rn)→ Γ(Rn)) or D : Γ(Rn)→ Γ(Rn)∗ ⊗ Γ(Rn). It is
possible to extend this definition to vector bundles. Given a vector bundle π : E →M
over a smooth n-manifold, we want to make in analogy to the directional derivative,
the following linear map

∇ : Γ(E)→ Γ(E ⊗ T ∗M).

Recall that the directional derivative has also a Leibniz rule. Let f : Rn → R be a
smooth function and X, Y : Rn → Rn be vector fields. Then DX(fY ) = df(X) ·
Yp + f(p)DXY, We require that ∇ has the same property. Then

∇(fX) = df ⊗X + f∇X

where X is a section of E and f is a smooth function on M . When ∇ satisfies
these requirements, we call ∇ a connection. When E = TM we call ∇ an affine or
linear connection. Before we continue we define some terminology that are related
to connections:

Definition 2.16. Given a connection ∇, X ∈ Γ(TM)(M) and s ∈ Γ(E). Then ∇s
returns a linear function Γ(TM)→ Γ(E). Define the covariant derivative ∇Xs of
s in the direction of X to be

∇Xs = (∇s)(X).

Notice that for any smooth function f on M we get that ∇fXs = f∇Xs and
∇X(fs) = df(X) ⊗ s + f∇Xs. Some writers like Lee define connections using
these properties [7, pg. 49-50]. Both definitions are equivalent.

Theorem 2.17 (Lee [7], Th. 5.4, pg. 68). If (M, g) is a Riemannian manifold, then
there exists a unique linear connection such that the following two properties holds:

1. Symmetric: The torsion tensor τ(X, Y ) = ∇XY −∇YX − [X, Y ] is equal to
zero.
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2 GAUSSIAN CURVATURE Andries Salm

2. Compatible with g: For all vector fields X, Y, Z the following relation holds:

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉

We call this unique connection the Riemannian connection or the Levi-Civita con-
nection

Proof: Let X, Y, Z be vector fields on M . Because ∇ is compatible with g, we get
the following relations:

X〈Y, Z〉 =〈∇XY, Z〉+ 〈Y,∇XZ〉
Y 〈Z,X〉 =〈∇YZ,X〉+ 〈Z,∇YX〉
Z〈X, Y 〉 =〈∇ZX, Y 〉+ 〈X,∇ZY 〉

Next we introduce the formula τ(X, Y ) = 0:

X〈Y, Z〉 =〈∇XY, Z〉+ 〈Y,∇ZX〉+ 〈Y, [X,Z]〉
Y 〈Z,X〉 =〈∇YZ,X〉+ 〈Z,∇XY 〉+ 〈Z, [Y,X]〉
Z〈X, Y 〉 =〈∇ZX, Y 〉+ 〈X,∇YZ〉+ 〈X, [Z, Y ]〉

We can solve this for 〈∇XY, Z〉. As a result we get:

〈∇XY, Z〉 = 1
2

(X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X, Y 〉−
− 〈Y, [X,Z]〉 − 〈Z, [Y,X]〉+ 〈X, [Z, Y ]〉) (1)

This uniquely determines ∇. Also, this connection exists. Since, for every coordinate
chart Uα we can pick a local frame. Using this frame we can define ∇ on each Uα
using Equation 1. Also, Formula 1 ensures us that ∇ is well defined on overlaps.
Hence, ∇ exists.

We only have to prove that ∇ is a connection. All terms on the right are R-linear
over X and Y . Thus,

∇X(aY1 + bY2) =a∇XY1 + b∇XY2 for a, b ∈ R and Y1, Y2 ∈ Γ(TM)

∇aX1+bX2(Y ) =a∇X1Y + b∇X2Y for a, b ∈ R and X1, X2 ∈ Γ(TM).
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Next we check that ∇XY is C∞-linear over X: Let f ∈ C∞(M), then:

2〈∇fXY, Z〉 =fX〈Y, Z〉+ Y 〈Z, fX〉 − Z〈fX, Y 〉−
−〈Y, [fX,Z]〉 − 〈Z, [Y, fX]〉+ 〈fX, [Z, Y ]〉
=fX〈Y, Z〉+ Y (f)〈Z,X〉+ fY 〈Z,X〉 − Z(f)〈X, Y 〉 − fZ〈X, Y 〉−
−Z(f)〈Y,X〉+ f〈Y, [Z,X]〉 − Y (f)〈Z,X〉 − f〈Z, f [Y,X]〉+ 〈fX, [Z, Y ]〉
=fX〈Y, Z〉+ fY 〈Z,X〉 − fZ〈X, Y 〉−
−f〈Y, [X,Z]〉 − f〈Z, [Y,X]〉+ f〈X, [Z, Y ]〉
=2〈f∇XY, Z〉

Because Z can be chosen arbitrary, we get that ∇fXY = f∇XY .

At last we have to check the Leibniz rule: Let f ∈ C∞(M). Then:

2〈∇XfY, Z〉 =X〈fY, Z〉+ fY 〈Z,X〉 − Z〈X, fY 〉−
−〈fY, [X,Z]〉 − 〈Z, [fY,X]〉+ 〈X, [Z, fY ]〉
=X(f)〈Y, Z〉+ fX〈Y, Z〉+ fY 〈Z,X〉 − Z(f)〈X, Y 〉 − fZ〈X, Y 〉−
−f〈Y, [X,Z]〉+X(f)〈Z, Y 〉+ f〈Z, [X, Y ]〉+ Z(f)〈X, Y 〉+ f〈X, [Z, Y ]〉
=2〈f∇XY, Z〉+ 2X(f)〈Y, Z〉

Again, Z is arbitrary. Thus, ∇X(fY ) = f∇XY +X(f)Y and we conclude that ∇ is
a connection. �

We work in Rn. On an open set U ⊆ Rn let {e1, . . . , en} be an orthonormal frame.
We can define a set of 1-forms {w1, . . . , wn} such that wi(ej) = δij. The idea is that
we take the cobasis of our frame. We call {w1, . . . , wn} the coframe associated to
{ei}. We want to investigate how {wi} behaves when we smoothly change frames.

Let ∇̃ be the Levi-Civita connection for Rn. Define the following 1-form wij as follows:

wij(X) = 〈∇̃Xei, ej〉

Lemma 2.18. The 1-form wij is anti-symmetric, i.e. wij = −wji

Proof: Let X be a vector field. Because ∇̃ is compatible with the metric and 〈ei, ej〉
is constant, we get that

0 = X〈ei, ej〉 = 〈∇̃Xei, ej〉+ 〈ei, ∇̃Xej〉 = wij(X) + wji(X).

So we can conclude that wij = −wji �

20
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Theorem 2.19 (The structure relations of Cartan). Let U ⊆ Rn, {ei}, {wi} and wij
be as above. Then the following relations hold for all 1 ≤ i, j ≤ n:

dwi =
n∑
k=1

wk ∧ wki (2)

dwij =
n∑
k=1

wik ∧ wkj (3)

Proof: Recall that the exterior derivative of an 1-form w is given by

dw(X, Y ) = Xw(Y )− Y w(X)− w([X, Y ])

When we apply this formula on wi for the generators (ea, eb) we get:

dwi(ea, eb) =eawi(eb)− ebwi(ea)− wi([ea, eb])
=eaδib − ebδia − wi([ea, eb])
=− wi([ea, eb])

In the last step we used that the derivative of δ is zero. Using the fact that ∇̃ is
torsion free, we get

dwi(ea, eb) =− wi(∇̃eaeb − ∇̃ebea)

=− wi(∇̃eaeb) + wi(∇̃ebea)

=− wbi(ea) + wai(eb).

On the other hand we have

n∑
k=1

wk ∧ wki(ea, eb) =
n∑
k=1

(wk(ea)wki(eb)− wk(eb)wki(ea))

=wai(eb)− wbi(ea)
=dwi(ea, eb).
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Using the fact that d2 = 0 and using Relation (2) we get that:

0 =d2wi

=
n∑
j=1

d(wij ∧ wj) Using 2 and anti-symmetry

=
n∑
j=1

(dwij ∧ wj − wij ∧ dwj) Leibniz rule

=
n∑
j=1

(dwij ∧ wj −
n∑
k=1

wij ∧ wjk ∧ wk) Using 2 and anti-symmetry

=
n∑
j=1

(dwij −
n∑
k=1

wik ∧ wkj) ∧ wj Reordering

Because all wj are independent, dwij =
∑n

k=1wik ∧ wkj. �

We have found a set of relations that describes the structure on U ⊆ Rn. If we have
a surface Σ immersed in Rn, we might wonder how the structure relations look like
on our manifold. Suppose Σ is a 2-manifold and ι : Σ→ R3 is an immersion. To find
the structure relations for Σ we take p ∈ Σ and let U ⊆ Σ be a neighborhood of ι(p),
such that the restriction of U the immersion is an embedding. Let V ⊆ R3, such that
V intersected with ι(Σ) is the image ι(U). For V we van pick an orthonormal frame
{ei} and calculate the dual frame {wi}. Choose the frame such that e1 and e2 are
tangent to Σ. The structure relations for V are:

dw1 =w2 ∧ w21 + w3 ∧ w31

dw2 =w1 ∧ w12 + w3 ∧ w32

dw3 =w1 ∧ w13 + w2 ∧ w23

dw12 =w13 ∧ w32

dw13 =w12 ∧ w23

dw23 =w21 ∧ w13

We can use the pullback to find a frame on Σ. Recall that a pullback x∗ is defined on
an n-form w at p as

x∗(w)p(v1, . . . , vn) = wx(p)(dx(v1), . . . , dx(vn))
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and recall that the pullback commutes with d and distributes with ∧. So for all
i, j ∈ {1, 2, 3}, the pullback ι∗(wi) and ι∗(wij) defines the structure relations on Σ.

Let’s calculate the pullback of w3. We will show that ι∗(w3) = 0. Indeed, let p ∈ Σ
and v ∈ TpΣ. Then dι(v) = a1e1 +a2e2 for some a1, a2 ∈ R. Following the definition
of the pullback we get

ι∗(w3)p(v) = (w3)ι(p)(dι(v)) = (w3)ι(p)(a1e1 + a2e2) = 0.

When we restrict ι to U we get that the pullback is a composition of injective functions.
Therefore, on ι(U), the 1-form w3 is zero. Using this and the structure relations, we
get on ι(U)

dw3 = w1 ∧ w13 + w2 ∧ w23 = 0.

Now we need the lemma of Cartan:

Lemma 2.20 (do Carmo [5], Lemma 1, pg. 80). Let V n be an n-dimensional vector
space and let w1, . . . wr : V n → R, r ≤ n be 1-forms such that all wi are independent.
Assume that there exists 1-forms θ1, . . . θr such that

∑r
i=0wi ∧ θi = 0. Then

θi =
r∑
j=1

aijwj with aij = aji.

Proof: Extend w1, . . . wr to a basis {w1, . . . , wn} of V ∗. Then for some aij and bij,
θi van be written as

θi =
r∑
j=1

aijwj +
n∑

l=r+1

bilwl.

Using
∑r

i=0 wi ∧ θi = 0, we get that

r∑
i=1

wi ∧ θi =
r∑
i=1

r∑
j=1

aijwi ∧ wj +
r∑
i=1

n∑
l=r+1

bilwi ∧ wl

=
r∑
i=1

r∑
j=i+1

(aij − aji)wi ∧ wj +
r∑
i=1

n∑
l=r+1

bilwi ∧ wl

=0.

Because wi are independent, aij = aji and bil = 0. �
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Applying Cartan’s lemma to dw3 we get that

w13 =h11w1 + h12w2

w23 =h21w1 + h22w2

for some hij ∈ R.

We will relate the values hij to the Gaussian curvature. Recall that the Levi-Civita

connection is unique. In R3 the differential dN(X) is equal to ∇̃Xe3. Denote dN as
a matrix in the frame {e1, e2}:

dN =

(
〈dNe1, e1〉 〈dNe2, e1〉
〈dNe1, e2〉 〈dNe2, e2〉

)
=

(
〈∇̃e1e3, e1〉 〈∇̃e2e3, e1〉
〈∇̃e1e3, e2〉 〈∇̃e2e3, e2〉

)

=

(
w31(e1) w32(e1)
w31(e2) w32(e2)

)
=−

(
h11 h21

h12 h22

)
Recall that the Gaussian curvature is defined as the determinant of dN . We get
that K = h11h22 − h2

12. To get a more convenient formulation we can calculate the
following:

dw12 = w13 ∧ w32 = −(h11h22 − h2
12)w1 ∧ w2 = −Kw1 ∧ w2

At the first glance it looks like that the Gaussian curvature does not depend how it is
immersed in R3, but only depends on the induced metric on TpΣ. This is indeed true
and this result is called the Egregium theorem of Gauss2. We will prove this formally:

Theorem 2.21 (do Carmo [5], Proposition 2, pg. 92). If ι, ι̃ : Σ → R3 are two
immersions with the same induced metric, then at each point p ∈ Σ the Gaussian
curvature are the same for both surfaces.

Proof: Let U ⊆ Σ be a neighborhood of p and pick an orthonormal frame {e1, e2} in
U . The frame {ι∗(e1), ι∗(e2)} can be extended to an orthonormal frame in a subset of
R3. Similarly the frame {ι̃∗(e1), ι̃∗(e2)} can also be extended to a local orthonormal
frame in R3. Let wi, w̃i be the corresponding coframes and let wij = 〈∇ei, ej〉,

2Egregium is an adjective conjugation of Egregius, which means Extraordinary [9]
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w̃ij = 〈∇̃ẽi, ẽj〉. Because the metric is the same for both immersions, we have
that w1 = w̃1 and w2 = w̃2. Because the Levi-Civita connection is unique, we get
w12 = w̃12. Now the following holds:

−Kw1 ∧ w2 = dw12 = dw̃12 = −K̃w1 ∧ w2

We can conclude that K = K̃ �.

Figure 6: According to Gauss ’remarkable’ theorem, it is impossible to make global
map which preserves length and area. The pink disks are in both images the same.
As you can see, this global map is distorted.

Example: As described by an article in Wired [2] we can use this theorem in everyday
life. Take for example the art of drawing world maps. Look at Figure 6. To get a
useful map, it must give an accurate representation of length and area. In other words.
we would like that the global map is an isometric immersion. But if we could define
such map, we would by Theorem 2.21 get that planes and spheres have the same
Gaussian curvature. We know from earlier example, that this isn’t true. Therefore,
global maps will always have artifacts.

Example: Recall the pizza example from the introduction. This is also described in
Wired [2]. Pizza slices are originally flat surfaces. Thus, the Gaussian curvature is
zero. According to Theorem 2.21, K is conserved under isometric immersions. In
Figure 1 both pizza slices are isometrically immersed. But if in Figure 1b the point
will tip down, the curvature will become negative and so this immersion will change
into a non-isometric immersion. In everyday life this will mean that the pizza-dough
will stretch or that the pizza slice will be torn apart. For well baked pizza’s this wont
happen, so by bending you prevent the point from tipping down.
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2.4 The Gaussian curvature for non-embedded 2-manifolds

As we have seen in last section, K is independent of isometric immersions. This raises
the question: Is it possible to extend the definition of K to surfaces that can’t be
embedded in R3? Take for example the Klein bottle. It is a 2-manifold, but we don’t
have a curvature defined for it.

Look back at the structure relations. For U ∈ Σ the were:

dw1 =w12 ∧ w2

dw2 =w21 ∧ w1

dw12 =w13 ∧ w32

dw13 =w12 ∧ w23

dw23 =w21 ∧ w13

Notice that dw1 and dw2 does not depend on the space the surface is embedded in.
We might wonder if it is possible to define w12 for non-embedded space, such that
the first two relations above holds. We will use the next lemma:

Lemma 2.22 (The Gauss formula, Lee [7], Th. 8.2, pg. 135). Let (M, g) be a
Riemannian manifold immersed in (M̃, g̃). Assume that M is immersed isometrically

into M̃ . Let ∇ and ∇̃ be the corresponding Levi-Civita connections and let X and Y
be vector fields. Then the tangential projection of ∇̃XY to TM is equal to ∇XY

Proof: Denote the projection of ∇̃XY to TM by >. Notice that this is a connection
itself. If we show that it is symmetric and compatible with g, we can use the unique-
ness of the Riemannian connection to prove the equality.

First we prove symmetry: because X, Y are vector fields on M , it follows that [X, Y ]

is also a vector field on M , so [X, Y ]> = [X, Y ]. Using the symmetry of ∇̃, we get
that

[X, Y ] =[X, Y ]>

=(∇̃XY − ∇̃YX)>

=(∇̃XY )> − (∇̃YX)>

Thus, (∇̃XY )> is symmetric. Next we will show compatibility with g: Using the
compatibility of g̃ we get:

Xg̃(Y, Z) =g̃(∇̃XY, Z) + g̃(Y, ∇̃XZ)
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Notice that the normal component will cancel, because Y and Z are in TM . Therefore,

Xg̃(Y, Z) =g̃((∇̃XY )>, Z) + g̃(Y, (∇̃XZ)>)

Using the fact that M is isometrically immersed into M̃ , we can conclude that
(∇̃XY )> is compatible with g. Because the Riemannian connection is unique, we

get that (∇̃XY )> = ∇XY �

Using this theorem we can relate w12 to the immersed connection. Let X a vector
field on Σ. Recall that w12(X) = 〈∇̃Xe1, e2〉. When we decompose ∇̃ into a tangent
part and a normal part, we get that w12(X) = 〈∇Xe1, e2〉.

We can use this to define w12 for non-embedded surfaces. Let Σ be a Riemannian 2-
manifold. Then Σ has a unique Levi-Civita connection ∇. Let {w1, w2} be a coframe
on U ⊆ Σ. Define wij as 〈∇Xei, ej〉 for i, j ∈ {1, 2}. Notice that we didn’t use
anything about Rn when we defined the structure relations. The structure relations
of Σ are:

dw1 =w12 ∧ w2

dw2 =w21 ∧ w1

We can also define the Gaussian curvature on U :

Definition 2.23. Using the definitions above. The Gaussian curvature K is defined
by the relation

dw12 = −Kw1 ∧ w2.

We need to check if this definition is independent of the choice of frame. The rest of
this section will be dedicated to this.

Suppose {e1, e2} and {ẽ1, ẽ2} are two orthonormal frames. Let {w1, w2} and {w̃1, w̃2}
be the corresponding dual frames and let w12 and w̃12 be the corresponding connection
forms. Let f, g : Σ→ R be functions such that

ẽ1 = fe1 + ge2.

From orthonormality and straightforward calculation follows that

ẽ2 =± (−ge1 + fe2)

1 =f 2 + g2
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The plus-minus sign comes from the fact that both frames may have different orien-
tation: Use the plus sign in the case they have the same orientation. Using this we
can calculate the wedge product of w̃1 and w̃2:

w̃1 ∧ w̃2 =± (fw1 + gw2) ∧ (−gw1 + fw2)

=± (f 2 + g2)w1 ∧ w2

=± w1 ∧ w2

The wedge product is thus the same up to orientation. Now we will check if w12

change under orientation. We will do this by differentiating w1 and w2 and using the
structure relations. Notice that

w1 =fw̃1 ∓ gw̃2

w2 =gw̃1 ± fw̃2.

Exterior derivation of w1 and w2 yields

dw1 =df ∧ w̃1 + fdw̃1 ∓ dg ∧ w̃2 ∓ gdw̃2

dw2 =dg ∧ w̃1 + gdw̃1 ± df ∧ w̃2 ± fdw̃2.

Next we fill in the structure relations and the anti-symmetry of w̃12:

dw1 =df ∧ w̃1 + fw̃12 ∧ w̃2 ∓ dg ∧ w̃2 ± gw̃12 ∧ w̃1

dw2 =dg ∧ w̃1 + gw̃12 ∧ w̃2 ± df ∧ w̃2 ∓ fw̃12 ∧ w̃1

Next we use the change of coordinates formulas for w̃1 and w̃2:

dw1 =(fdf + gdg) ∧ w̃1 − (fdg − gdf) ∧ w̃2 ± (f 2 + g2)w̃12 ∧ w2

dw2 =(fdf + gdg) ∧ w̃2 + (fdg − gdf) ∧ w̃1 ∓ (f 2 + g2)w̃12 ∧ w1

Recall that f 2 + g2 = 1, so fdf + gdg = 0. Define τ = fdg− gdf . Filling this in we
get

dw1 =(±w̃12 − τ) ∧ w2

dw2 =− (±w̃12 − τ) ∧ w1.

From the uniqueness of ∇ follows that

w12 = ±w̃12 − τ.
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We notice that w12 and w̃12 are different. Luckily dw12 is the same as dw̃12 up to
orientation. Indeed, this follows from remark 2.2 from [14]: Calculating dw12 gives

dw12 = ±dw̃12 − dτ.

Saying dw12 is the same as dw̃12 up to orientation, is the same as saying that dτ = 0.
Calculating dτ yields

dτ = df ∧ dg − dg ∧ df = 2df ∧ dg.

Let p ∈ U ⊆ Σ such that f(p) 6= 0. Wedging fdf + gdg with dg gives fdf ∧ dg.
Notice that fdf + gdg is the derivative of f 2 + g2 = 1. Therefore, df ∧ dg = 0.
Suppose f(p) = 0. Then g(p) 6= 0. Wedging fdf + gdg with df gives gdf ∧dg = 0.
In all cases dτ = 0.

We can finally conclude the following theorem:

Theorem 2.24 (do Carmo [5], Proposition 2, pg. 92). The Gaussian curvature,
defined by the relation dw12 = −Kw1 ∧ w2 is independent of the choice of frame.

Proof: Suppose {e1, e2} and {ẽ1, ẽ2} are two orthonormal frames. Let {w1, w2}
and {w̃1, w̃2} ne the corresponding dual frames and let w12 = 〈∇e1, e2〉 and w̃12 =

〈∇̃ẽ1, ẽ2〉 be the corresponding connection forms. Then

−Kw1 ∧ w2 = dw12 = ±dw̃12 = ∓K̃w̃1 ∧ w̃2 = −K̃w1 ∧ w2.

Therefore we can conclude that K = K̃. �

Corollary 2.25 (Hairy ball theorem, proof from Simic [14], pg. 6-7). There exists no
non-vanishing smooth vector field on S2 ⊆ R3

Proof: Suppose that there exists a non-vanishing vector field X. Let e1 = X
|X| and let

e2 be such that {e1, e2} is an orthonormal frame. Let {w1, w2} be de corresponding
coframe. Because X is non-vanishing, {e1, e2} is a global frame on S2. Recall that the
Gaussian curvature of S2 is 1 at every point. Using that w1 ∧ w2 is the volume-form
we can calculate the area

Area(S2) =

∫
S2

w1 ∧ w2

Using the relation dw12 = −Kw1 ∧ w2 we get

Area(S2) = −
∫
S2

dw12
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Now we can apply stokes. Because S2 has no boundary, we get that the integral will
be zero:

Area(S2) = −
∫
∂S2

w12 = 0

This is a contradiction, because the surface of a unit sphere has an area of 4π. �

Figure 7: An example of a vector field on S2. Notice that on the top there is a
singularity. According to the hairy ball theorem, it is not possible to find a vector field
without singularities.
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2.5 The general notion of curvature

In calculus on Rn, the partial derivatives of a multi-variable function will commute.
Directional derivatives of a real valued function only commute when the Lie-bracket of
vector fields is equal to zero. Because connections are a generalization of directional
derivatives, we might wonder if there is an equation to measure the interchangeability
like that for directional derivatives. We will investigate in this section.

Let M = Rn and let ∇̃ be the Levi-Civita connection of M . We want to calculate
what happens when we commute two connections. Let X,Y and Z be vector fields.
Let {ei} be the default coordinate basis and denote Z in this basis by:

Z =
n∑
i=1

Ziei

Because ∇̃ is equal to the directional derivative in Rn, is ∇̃XZ equal to
∑n

i=1X(Zi)ei.

To check that ∇̃X and ∇̃Y commute we calculate the following:

∇̃X∇̃YZ − ∇̃Y ∇̃XZ =
n∑
i=1

(∇̃X(Y (Zi))− ∇̃Y (X(Zi)))ei

=
n∑
i=1

(X(Y (Zi))− Y (X(Zi)))ei

=
n∑
i=1

([X, Y ](Zi))ei

=∇̃[X,Y ]Z

We can conclude from this that for Rn, we have that ∇̃X∇̃YZ−∇̃Y ∇̃XZ−∇̃[X,Y ]Z =
0. For general Riemannian manifolds, it is not necessarily equal to zero. The rest of
this section we will investigate how ∇̃X∇̃YZ − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z will relate to the
Gaussian curvature.

Definition 2.26. Let (M, g) be a Riemannian manifold and let ∇ be the Levi-Civita
connection. We define the Riemann curvature endomorphism to be the map
R : Γ(TM)× Γ(TM)× Γ(TM)→ Γ(TM) defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

Lemma 2.27 (Lee [7], Prop. 7.1, pg. 117-118). The curvature endomorphism is a
tensor field.
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Proof: Notice that R is multi-linear over R. We only have to show that R is multi-
linear over C∞(M). Let f be a real valued function over M . From the properties of
connections, it follows that

R(X, fY )Z =∇X∇fYZ −∇fY∇XZ −∇[X,fY ]Z

=∇X(f∇YZ)− f∇Y∇XZ −∇X(f)Y+f [X,Y ]Z

=X(f)∇YZ + f∇X(∇YZ)− f∇Y∇XZ − f∇[X,Y ]Z −X(f)∇YZ

=f(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z)

=fR(X, Y )Z.

Notice from the definition that R(X, Y )Z = −R(Y,X)Z. Therefore,

R(fX, Y )Z = −R(Y, fX)Z = −fR(Y,X)Z = fR(X, Y )Z.

At last we will check if R is C∞(M)-linear in Z:

R(X, Y )(fZ) =∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ)

=∇X(Y (f)Z + f∇YZ)−∇Y (X(f)Z + f∇XZ)−
−([X, Y ](f))Z − f∇[X,Y ]Z

=X(Y (f))Z + Y (f)∇X(Z) +X(f)∇YZ + f∇X(∇YZ)−
−Y (X(f))Z −X(f)∇YZ − Y (f)∇XZ − f∇Y∇XZ−
−([X, Y ](f))Z − f∇[X,Y ]Z

=f(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z)+

+(X(Y (f))− Y (X(f))− [X, Y ](f))Z

=fR(X, Y )Z

Therefore R is a tensor field. �

Definition 2.28. Let (M, g) be a Riemannian manifold and let ∇ be the Levi-Civita
connection. The Riemann curvature tensor, Rm, is a 4-tensor defined by

Rm(X, Y, Z,W ) = g(R(X, Y, Z),W ).
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2 GAUSSIAN CURVATURE Andries Salm

Let (M, g) be a Riemannian manifold that is isometrically immersed into (M̃, g̃). We
will investigate how the curvature tensor Rm of M is related to the curvature tensor
R̃m of M̃ .

Let > denote the projection to the tangent bundle TM and ⊥ denote the projection
to the normal bundle NM . Then for vector fields X and Y on M , the Levi-Civita
connection ∇̃ for M̃ can be written as

∇̃XY = (∇̃XY )> + (∇̃XY )⊥,

because TM̃ |M = TM ⊕ NM . From Lemma 2.22 follows that (∇̃XY )> = ∇XY ,
where ∇ is the Levi-civita connection of M . In this section we will focus more on the
term (∇̃XY )⊥:

Definition 2.29. Let (M, g) be a Riemannian manifold that is isometrically im-
mersed into (M̃, g̃). The second fundamental form of M is the map II : Γ(TM)×
Γ(TM)→ Γ(NM) and is defined by

II(X, Y ) = (∇̃XY )⊥.

Lemma 2.30 (Lee [7], Lm. 8,1, pg. 134). The second fundamental form of M is
symmetric.

Proof: Because the Levi-Civita connection is torsion-free, it follows that

II(X, Y )− II(Y,X) = (∇̃XY − ∇̃YX)⊥ = [X, Y ]⊥.

We assumed that X and Y are sections of the tangent bundle. Therefore, the Lie
bracket of X and Y will lie in the tangent bundle. Therefore, the projection to
the normal bundle will yield zero. Thus, we can conclude that fundamental form is
symmetric. �

Lemma 2.31 (Weingarter equation, Lee [7], Lm. 8.3, pg. 136). Let X, Y ∈ Γ(TM)
and suppose that N ∈ Γ(NM). Then

〈∇̃XN, Y 〉 = −〈N, II(X, Y )〉.

Proof: This proof will use the same tricks used in Lemma 2.4. Because N is orthonor-
mal to Y , it follows that 〈N, Y 〉 = 0 and so will the derivative in the direction of X
be zero. Using the compatibility of the metric it follows that:

0 =X〈N, Y 〉
=〈∇̃XN, Y 〉+ 〈N, ∇̃XY 〉.
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Next we split ∇̃ into its normal and tangent components. The tangent components
will disappear against the inner-product with the normal vector.

0 =〈∇̃XN, Y 〉+ 〈N,∇XY + II(X, Y )〉
=〈∇̃XN, Y 〉+ 〈N, II(X, Y )〉

From this we conclude the lemma. �

Lemma 2.32 (The Gauss Equation, Lee [7], Thm. 8.4, pg. 136). For any X, Y, Z,W ∈
TpM , the following holds:

R̃m(X, Y, Z,W ) = Rm(X, Y, Z,W )− 〈II(X,W ), II(Y, Z)〉+ 〈II(X,Z), II(Y,W )〉

Proof: Recall the definition of the Riemann curvature:

R̃m(X, Y, Z,W ) = 〈∇̃X∇̃YZ − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z,W 〉

We will expand ∇̃ into its normal and tangent components:

R̃m(X, Y, Z,W ) =〈∇̃X(∇YZ + II(Y, Z)),W 〉 − 〈∇̃Y (∇XZ + II(X,Z)),W 〉−
−〈∇[X,Y ]Z + II([X, Y ], Z),W 〉

Because II lives in the normal bundle, the term II([X, Y ], Z) will cancel against
the inner product with W . For the same reason, we can apply Lemma 2.31 to the
equation:

R̃m(X, Y, Z,W ) =〈∇̃X∇YZ,W 〉 − 〈∇̃XW, II(Y, Z)〉−
−〈∇̃Y∇XZ,W 〉+ 〈∇̃YW, II(X,Z)〉−
−〈∇[X,Y ]Z,W 〉

We again expand ∇̃ into its normal and tangent components. Notice that half of the
terms will fall away due to the fact that the tangent bundle is normal to the normal
bundle.

R̃m(X, Y, Z,W ) =〈∇X∇YZ + II(X,∇YZ),W 〉 − 〈∇XW + II(X,W ), II(Y, Z)〉−
−〈∇Y∇XZ + II(Y,∇XZ),W 〉+ 〈∇YW + II(Y,W ), II(X,Z)〉−
−〈∇[X,Y ]Z,W 〉

=〈∇X∇YZ,W 〉 − 〈II(X,W ), II(Y, Z)〉−
−〈∇Y∇XZ),W 〉+ 〈II(Y,W ), II(X,Z)〉−
−〈∇[X,Y ]Z,W 〉
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By reordering we will obtain te required result

R̃m(X, Y, Z,W ) =〈∇X∇YZ −∇Y∇XZ)−∇[X,Y ]Z,W 〉−
−〈II(X,W ), II(Y, Z)〉 − 〈II(Y,W ), II(X,Z)〉

=Rm(X, Y, Z,W )− 〈II(X,W ), II(Y, Z)〉+ 〈II(Y,W ), II(X,Z)〉

from which we conclude the proof. �

Using the previous lemma we will relate the Riemann curvature to the Gaussian curva-
ture. Let (M, g) be a Riemannian manifold. According to Nash embedding theorem
[12] there is a positive integer n such that M can be isometrically immersed into Rn.
Recall that the Riemann curvature of the Euclidean space is zero. Lemma 2.32 can
thus be reduced to

Rm(X, Y, Z,W ) = 〈II(X,W ), II(Y, Z)〉 − 〈II(Y,W ), II(X,Z)〉.

We will relate the Gaussian curvature to this formula.

Theorem 2.33. Let Σ be a Riemannian 2-manifold and let e1 and e2 be a local
orthonormal frame on Σ. Let w1 and w2 be the corresponding coframe. Then the
Riemann curvature of Σ and the Gaussian curvature of Σ are the same, that is:

K = Rm(e1, e2, e2, e1)

Proof: According to Nash [12], we can assume that Σ is isometrically immersed
into Rn for some large enough n. Extend the given frame to an orthonormal frame
{e1, e2, e3, . . . en} in Rn. Also extend the coframe.

Let ∇̃ be the Levi-Civita connection on Rn. Recall that the second fundamental
form is the projection of ∇̃ to the normal bundle. In the given frame, the second
fundamental form is equal to

II(X, Y ) =
n∑
k=3

〈∇̃XY, ek〉ek.
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Using this we will calculate the Riemann curvature.

Rm(e1, e2, e2, e1) = 〈II(X,W ), II(Y, Z)〉 − 〈II(Y,W ), II(X,Z)〉

=

〈
n∑
k=3

〈∇̃e1e1, ek〉ek,
n∑
k=3

〈∇̃e2e2, ek〉ek

〉
−

〈
n∑
k=3

〈∇̃e2e1, ek〉ek,
n∑
k=3

〈∇̃e1e2, ek〉ek

〉

=
n∑
k=3

〈∇̃e1e1, ek〉〈∇̃e2e2, ek〉 − 〈∇̃e2e1, ek〉〈∇̃e1e2, ek〉

Recall that wij is an 1-form defined as wij(X) = 〈∇̃Xei, ej〉. Using this we can
reformulate the Riemann curvature as the sum of the wedges of 1-forms. We will use
the anti-symmetry of wij:

Rm(e1, e2, e2, e1) =
n∑
k=3

〈∇̃e1e1, ek〉〈∇̃e2e2, ek〉 − 〈∇̃e2e1, ek〉〈∇̃e1e2, ek〉

=
n∑
k=3

w1k(e1)w2k(e2)− w1k(e2)w2k(e1)

=
n∑
k=3

−w1k(e1)wk2(e2)− w1k(e2)wk2(e1)

=
n∑
k=3

w1k ∧ wk2(e2, e1)

Recall from the structure relations of Theorem 2.19 that dwij =
∑

k wik ∧wkj. Using
the definition of the Gaussian curvature we then get that

Rm(e1, e2, e2, e1) =dw12(e2, e1)

=−Kw1 ∧ w2(e2, e1)

=K

from which we conclude the proof. �
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3 Singularities of vector fields

To prove the Gauss-Bonnet theorem we will need the notion of an index of vector
fields. In this chapter we will define what an index is and how we can calculate it.
Next we will see how the index relates with the method of moving frames. Here we
notice that we made a lot of choices. We will show that the index only depends on
the vector field and not on the choices of path, frame and metric. At last we will give
a relationship between indices and the Euler characteristic. The source of this chapter
is do Carmo [5, Lemma 5 of chapter 5 and chapter 6].

3.1 An intuitive definition of the index

In this chapter we use the following definitions: Let Σ be a compact, oriented Rie-
mannian 2-manifold and let {e1, e2} be an orthonormal frame defined on a simply
connected neighborhood of p ∈ Σ. Let {w1, w2} be the corresponding dual frame and
let w12 be the corresponding connection form. Let X be a smooth vector field.

Using X we can define an orthonormal frame. Let ẽ1 = X
|X| and let e2 such that

{ẽ1, ẽ2} is an orthonormal frame for which the orientation coincides with Σ. From
this we can define the corresponding w̃1, w̃2 and w̃12. Notice that this frame is well-
defined on all points p ∈ Σ where X(p) 6= 0. If X(p) = 0, then we call p a singular
point. We would like to know the number of ”turns” given by the vector field as we
go around an isolated singularity. [5, pg. 100]. We define this number as follows:

Let U ∈ Σ be a neighborhood such that it only contains one singularity p. If such U
exists, we call p isolated. We assume that X has only isolated singularities. Since Σ
is compact, X has finitely many isolated singularities. Pick in U a neighborhood V
of p such that V is homeomorphic to a disk. Suppose that {e1, e2} is defined on V .
Let γ be a path which is the parameterization of ∂V . Let φ : I → R be a continuous
function which is the ’angle’3 between e1 and ẽ1 along γ. Notice that φ can be made
continuous by adding of subtracting multiples of 2π. By continuity also follows that
φ(tstart) ≡ φ(tend) mod 2π. We define the index of X at p as 1

2π
(φ(tend)−φ(tstart)).

For example, take a look at Figure 8(this is also example 4.3 in [14]). This vector
field has a singularity at the origin. Let U and V be the closed disk at the origin with
radius one. Now γ is the clockwise parameterization of the circle. At positions 1 to 5
the angle is measured and is visualized in the circles next to the vector field. It looks

3Later in this chapter we will define φ more formally.
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like that the angle rotates one time clockwise. Because the index is the number of
times the vector field turns counterclockwise, is the index in this example equal to -1.

Figure 8: The vector field in R2 of x ∂
∂x
− y ∂

∂y
. The circle drawn is the image of the

path γ(t) = {cos(t), sin(t)}. At the points 1 to 5 the angle is measured between
the vector field and the default ∂

∂x
vector of R2. These angles are shown next to the

vector field. At the origin there is a singularity, which has an index of -1.

We can calculate the index of this example explicitly. The path γ : [0, 2π] → R2 is
defined as γ(t) = (cos t, sin t). In this example the angle function is continuous when
it is defined as:

φ(t) =


arctan − sin t

cos t
if 0 ≤ t < π

2

−π
2

if t = π
2

arctan − sin t
cos t
− π if π

2
< t < 3π

2

−3π
2

if t = 3π
2

arctan − sin t
cos t
− 2π if 3π

2
< t < 2π

Notice that this function is equal to the function φ(t) = −t. Therefore the index is
equal to 1

2π
(−2π − 0) = −1.
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3.2 Using the method of moving frames to calculate the index

In chapter 2.4 we found some relations when we compared two different orthonormal
frames. From the change of coordinates we found the functions f, g : V − {p} → R
such that:

ẽ1 =fe1 + ge2

ẽ2 =− ge1 + fe2

We also defined τ = fdg − gdf where we found that dτ = 0 and

w12 = w̃12 − τ.

We might wonder how we can interpret this 1-form τ . It turns out that τ will give the
rate of change of the angle between both frames. Next lemma will state this more
formally. This is lemma 5 in do Carmo [5]

Lemma 3.1 (do Carmo [5], lemma 5, pg. 91). Let p ∈ U ⊆ Σ be a point and let
γ : I → U be a curve such that γ(t0) = p. Let φ0 be the angle between e1 and ẽ1.
Then

φ(t) = φ0 +

∫ t

t0

(
f(γ(t))

dg(γ(t))

dt
− g(γ(t))

df(γ(t))

dt

)
dt

is a differentiable function such that

cosφ(t) = f(γ(t)), sinφ(t) = g(γ(t)), φ(t0) = φ0 and dφ = γ∗τ.

Proof: First we prove the simple statements. Recall that that integral of a continuous
function is differentiable. Therefore, φ is differentiable. Also φ(t0) = φ0 +

∫ t0
t0
. . . dt =

φ0. Lastly note that the part in the brackets is equal to γ∗τ . Therefore, φ can be
written as

φ(t) = φ0 +

∫ t

t0

γ∗τdt.

Using the fundamental theorem of calculus we get that

dφ = γ∗τ.

We still have to prove that cosφ(t) = f(γ(t)) and sinφ(t) = g(γ(t)). First we show
that f(γ(t)) · cosφ(t) + g(γ(t)) · sinφ(t) = 1. For brevity let f̂ = f ◦γ and ĝ = g ◦γ.
Differentiating yields

(f̂ cosφ+ ĝ sinφ)′ =f̂ ′ cosφ− f̂ sinφφ′ + ĝ′ sinφ+ ĝ cosφφ′.
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Using the fact that φ′ = f̂ ĝ′ − ĝf̂ ′ we get

(f̂ cosφ+ ĝ sinφ)′ =f̂ ′ cosφ− f̂(f̂ ĝ′ − ĝf̂ ′) sinφ+ ĝ′ sinφ+ ĝ(f̂ ĝ′ − ĝf̂ ′) cosφ

=(f̂ ′ + f̂ ĝĝ′ − ĝ2f̂ ′) cosφ+ (−f̂ 2ĝ′ + f̂ ĝf̂ ′ + ĝ′) sinφ.

We can add the relation f̂ 2 + ĝ2 = 1 anywhere. If we place this at the right spots we
get:

(f̂ cosφ+ ĝ sinφ)′ =((f̂ 2 + ĝ2)f̂ ′ + f̂ ĝĝ′ − ĝ2f̂ ′) cosφ+

+(−f̂ 2ĝ′ + f̂ ĝf̂ ′ + (f̂ 2 + ĝ2)ĝ′) sinφ

=f̂(f̂ f̂ ′ + ĝĝ′) cosφ+ ĝ(f̂ f̂ ′ + ĝĝ′) sinφ

=(f̂ f̂ ′ + ĝĝ′)(f̂ cosφ+ ĝ sinφ)

Notice from f̂ 2 + ĝ2 = 1 follows that f̂ f̂ ′ + ĝĝ′ = 0. Thus the above equation is
equal to zero. Therefore, f̂ cosφ+ ĝ sinφ is constant. By hypothesis, φ0 is the angle
between e1 and ẽ1. This is equivalent by saying that cosφ0 = f(p) and sinφ0 = g(p).
Using this fact it follows that

f̂(t0) cosφ(t0) + ĝ(t0) sinφ(t0) = f(p) cosφ0 + g(p) sinφ0 = f 2(p) + g2(p) = 1.

Using this it follows that

(f̂ − cosφ)2 − (ĝ − sinφ)2 =f̂ 2 + ĝ2 − 2(f̂ cosφ+ ĝ sinφ) + sin2φ+ cos2φ = 0.

Therefore we can conclude that f ◦ γ = cosφ and g ◦ γ = sinφ. �

Using this lemma we can relate τ to the index. Let C be the boundary of the closure
of V and let γ : I → C be a parameterization. Recall that the index I of X at p
is 2πI = φ(tend) − φ(tstart). From the fundamental theorem of calculus follows that
2πI =

∫ tend

tstart
dφ. Lemma 3.1 tells us that dφ = γ∗τ . We can conclude that

2πI =

∫
C

τ.

We can use this to formally define the index of X at p:

Definition 3.2. Using the definitions of the variables above. The index I of X at p
is defined as

I =
1

2π

∫
γ

τ.
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We made a lot of choices in this definition. We chose a curve γ, an orthonormal
frame {e1, e2} and we chose a Riemannian metric. We will prove that the index is
independent of any of this.

Remark: There is also a topological definition of the index of a vector field. (People
not familiar to algebraic topology can skip this remark and continue reading) Recall
that Rn−{p} is homotopic to Sn−1, a loop without self intersections is homotopic to
a circle and that the homology group of Hn(Sn) is Z. Then, when we take a small
enough loop γ homotopic to a circle around the singularity p, the map X|γ : S1 → S1

induces a map in homology H1(S1) → H1(S1). Because H1(S1) ' Z, an element
α will be mapped to Iα. This number I is the degree of the map X|γ and we
define the index of X at p as this degree. This definition is equivalent as above, but
does not depend on the choice of path, because homotopic paths induce the same
homomorphism [6, Prop. 2.10, pg. 111]. It also does not depend on the metric,
because there is always an homotopy between metrics. Finally, the frame {e1, e2}
doesn’t matter either, because this frame is defined on a null-homotopic neighborhood
V . So changing the frame will not change the induced map H1(S1)→ H1(S1). With
this in mind, the next three lemmas are trivial and can be skipped.

(a) In the case two closed simple paths don’t
intersect, they enclose an area that looks like
an annulus.

(b) In the case two closed simple paths C1

and C2 do intersect, we can always pick a
simple closed path C3 such that C3 is in the
interior of the intersection between C1 and
C2.

Figure 9: The index I does not depend on the choice of path.

Lemma 3.3 (do Carmo [5], Lemma 1, pg. 100). The index I does not depend on
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the choice of path.

Proof: Let C1 and C2 be two closed curves around p such that the only singularity
they enclose is p. Suppose that C1 and C2 don’t intersect. This is shown in Figure 9a.
The paths C1 and C2 are the boundary of an annulus like surface ∆. Using Stokes’
theorem it follows that the difference between the corresponding indices I1 and I2 is

I1 − I2 =
1

2π

∫
C1

τ − 1

2π

∫
C2

τ =
1

2π

∫
∆

dτ = 0.

We also used the fact that dτ = 0.

Suppose that the paths C1 and C2 do intersect. Take a look at Figure 9b. We pick a
path C3 in the interior of the intersection of C1 and C2, such that C3 circles around
p. Using that I3 = I1 and I3 = I2 we can conclude that

I1 = I3 = I2.

�

Lemma 3.4 (Simic [5], Lemma 4.6). The index I does not depend on the choice
of frame {e1, e2}. More precisely, let Sr be the boundary of the disk of radius r and
center p. Then the limit

lim
r→0

1

2π

∫
Sr

w̃12 = Ĩ

exists and Ĩ = I.

Proof: First we prove that the limit exists. We will use the Cauchy criterion. This
means we have to show that

lim
r1,r2→0

∣∣∣∣∣
∫
Sr1

w̃12 −
∫
Sr2

w̃12

∣∣∣∣∣ = 0.

Suppose w.l.o.g. r1 > r2. As we can see in Figure 9a, the paths Sr1 and Sr2 enclose
an annulus ∆. Using Stokes theorem we get that∫

Sr1

w̃12 −
∫
Sr2

w̃12 =

∫
∂∆

w̃12 =

∫
∆

dw̃12.

Notice that when r1 and r2 goes to zero, the area of ∆ will also go to zero. Since
dw12 is bounded, the limit lim

r1,r2→0

∫
∆

dw̃12 is zero. Therefore, the limit exists.
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Now we will show that this limit is equal to the index I at p. Let r1 be arbitrary small
but fixed and let r2 < r1. We take the limit when r2 goes to 0. Then by Stokes we
have that ∫

Sr1

w̃12 = lim
r2→0

∫
Sr1−Sr2

w̃12 + lim
r2→0

∫
Sr2

w̃12

=

∫
Br1

dw̃12 + 2πĨ = −
∫
Br1

Kw̃1 ∧ w̃2 + 2πĨ.

We may notice that dw̃12 is not everywhere defined on Br1 . But because dw̃12 =
−Kw̃1 ∧ w̃2 = −Kw1 ∧ w2 we can extend it.

Recall that w̃12 = w12 + τ . Calculating the integral over Sr1 gives∫
Sr1

w̃12 =

∫
Sr1

w12 +

∫
Sr1

τ =

∫
Br1

dw12 + 2πI = −
∫
Br1

Kw1 ∧ w2 + 2πI.

from which we can conclude that Ĩ = I. �

Lemma 3.5 (do Carmo [5], Lemma 3, pg. 102). The index I does not depend on
the choice of metric

Proof: Let 〈·, ·〉0 and 〈·, ·〉1 be two Riemannian metrics on Σ. Let t ∈ [0, 1] and define
for all t the following function:

〈·, ·〉t = t〈·, ·〉1 + (1− t)〈·, ·〉0

Notice that this homotopy between 〈·, ·〉0 and 〈·, ·〉1 is a new Riemannian metric
on Σ for each t ∈ [0, 1] . Let I0, I1 and It the corresponding indices. From the
Gramm-Schmidt process it follows that the frames and co-frames depend continuous
on t. Therefore, the connection forms are also continuous. This means that the
difference τ and It is also continuous. Recall that the index is integer valued. The
only continuous integer valued function is a constant function. We can conclude that
I0 = I1. �

3.3 The relation between the index and the Euler characteris-
tic

We have seen in the previous section how the index relates to the τ . We have seen
that the index only depends on the vector field. It turns out that the sum of all indices
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is independent of the vector field. Therefore is this sum a topological quantity of the
surface. We wonder how this relates to another topological quantity, namely the Euler
characteristic.

We will sketch the relation between indices and the Euler characteristic. We follow
the prove given by do Carmo [5, Remark 1, pg. 103] in chapter 6. Another type of
proof can be found in e.g. [11, Chapter 6, pg. 35]. The theorem which relate the
Euler characteristic to the sum of indices is called the Poincare-Hopf theorem.

Suppose we have a compact 2-manifold Σ. We can describe our surface as a union of
triangles in such way that each two triangles have either a common edge, a common
vertex or are fully disjoint. We call such a union of triangles a triangulation.

Lemma 3.6 (Abate [1],Theorem 6.5.10, pg. 340). All surfaces admit a triangulation.

This proof is left as exercise for the reader. For an extended proof see [1, Theorem
6.5.10, pg. 340]. Using triangulation’s we will define the Euler characteristic:

Definition 3.7. Let Σ be a triangulated surface. Define F as the number of faces,
E of edges and V of vertices of the triangulation. Then the Euler characteristic χ(Σ)
is defined as

χ(Σ) = F − E + V.

Remark: If X is a CW complex, then χ is generally defined as the alternating sum
of the number of n-cells. These two definitions are the same for surfaces, because
triangulation’s are CW -complexes.

Theorem 3.8 (Hatcher [6], Th. 2.44, pg. 146). If two surfaces are homotopy invari-
ant, then they have the same Euler characteristic. Moreover, the Euler characteristic
χ of a space X is equal to

χ(X) =
∑
n

(−1)nrankHn(X).

Proof: This is an algebraic topological proof. Knowledge of homology is thereby
required. Let

0→ Ck
dk−→ Ck−1

dk−1−−→ Ck−1 → . . .→ C1
d1−→ C0 → 0

be a chain complex of finitely generated abelian groups. Let Zn = ker dn, Bn =
Im dn+1 and Hn = Zn

Bn
. From this we can create the following short exact sequences.

0→ Zn
id−→ Cn

dn−→ Bn−1 → 0
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0→ Bn
dn−→ Zn

x 7→[x]−−−→ Hn → 0

From the rank - nullity theorem from linear algebra it follows that rankCn = rankZn+
rank Bn−1. In the same manner it is true that rank Zn = rank Bn + rank Hn.
Calculating the alternating sum yields:∑

n

(−1)nrank Cn =
∑
n

(−1)nrank Zn +
∑
n

(−1)nrankBn−1

=
∑
n

(−1)nrankHn +
∑
n

(−1)nrankBn −
∑
n

(−1)nrankBn

=
∑
n

rankHn

Lastly we have to relate the Cn with the sum of n-cells. If we pick Cn = Hn(Xn, Xn−1) =
H̃n(Xn/Xn−1), we get that Cn is the homology group of the wedge of n-spheres. For
each n-cell there is one wedge. Calculating the homology yields that Cn will be equal
to Z#n−cells. �

Figure 10: Example of a vector field where each
face, edge and vertex has 1 singularity. The black
lines represent the triangulation of the surface. The
red line forms the vector field.

Next we will create a vec-
tor field such that the sum
of the indices is equal to
χ(Σ). We will do this by
adding singularities on specific
places.

Suppose we have a triangula-
tion for our surface, such as that
shown in Figure 10. Add a sin-
gularity in the center of each
face such that the vector field
moves away from that point.
Such a singularity is called a
source. Next add a singular-
ity at each vertex such that the
vector field moves towards that
point. This is called a sink.
To prevent unwanted singulari-
ties we add singularities like those shown in Figure 8 on each edge. Those singularities
are called saddles. For saddles we know that the index is -1. The same way it can be
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shown that the index of saddles and sources are +1. The sum of the indices of this
vector field is equal to∑

Index =
∑

sources

1−
∑

saddles

1 +
∑
sinks

1 = F − E + V = χ(Σ).

Later we will show that the sum of the indices is independent of the vector field.
We will follow directly from our proof of the Gauss-Bonnet theorem. Then we can
calculate the characteristic purely from the indices.

Example: We know that the sphere is homotopic to a cube. A cube has 6 faces, 8
vertices and 12 edges. Calculating the characteristic using the classical formula gives
us that

χ(S2) = F − E + V = 6− 12 + 8 = 2

Therefore, χ(S2) = 2.

Example: Look at Figure 7. We will calculate χ(S2) using the sum of indices. In
Figure 7 there are 2 singularities. One at the top and one at the bottom. At the
top there is a sink with index 1 and at the top there is a source with index 1. The
sum of indices is thus 2. In this case the sum of the indices agrees with the Euler
characteristic.
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4 Another type of curvature: Geodesic curvature

We have developed all the tools we need to prove the Gauss-Bonnet theorem for 2-
manifolds without boundary. For 2-manifolds with boundary we need to define an
extra type of curvature, namely the geodesic curvature. In this chapter we will define
this curvature and give a geometric interpretation. We will follow do Carmo [5, Chap-
ter 5, pg 91 to 96]

Figure 11: A graphical illustration of the construc-
tion of the geodesic curvature kg

Let’s look back how the nor-
mal curvature was defined in
R3. As we may see in
Figure 11, We defined the
normal curvature by compar-
ing the second derivative of
a path to the normal vec-
tor. We might wonder what
information about curvature we
get when we project the sec-
ond derivative to the tangent
plane.

Let > denote this projection.
Recall from Lemma 2.22 that for
an isometric immersion M →
M̃ of Riemannian manifolds we
have (∇̃)> = ∇. We can thus
use the covariant derivative of the surface for the projection of the second derivative.
We will define the geodesic curvature as follows:

Theorem 4.1 (do Carmo [5], Definition 4, pg. 94). Let Σ be a Riemannian 2-
manifold, with ∇ as its Levi-Civita connection. Let γ : I → Σ be a regular differen-
tiable curve parametrized by arc length. Pick a local orthonormal frame consistent
with the orientation of the surface and such that e1 = γ′(s). Define the geodesic
curvature kg at γ(s) as the number

kg = 〈∇γ′(s)e1, e2〉 = w12 [γ′(s)] = (γ∗w12)

(
∂

∂s

)
.

To give a geometric interpretation we first need to define the following:
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Definition 4.2 (do Carmo [5], Definition 2, pg. 94). A vector field Y is called parallel
along a cuve γ(t) if the covariant derivative ∇γ′(t)Y = 0 for all t.

(a) Parallel field Y = {0, 1} along the unit
circle embedded in R2.

(b) Parallel field Y = {−y, x} along the
meridian (parameterized by arc length) of
S2.

Figure 12: Two examples of parrallel fields along the unit circle.

Example: In Figure 12 are two examples of parallel fields along the unit circle. In the
first example we assume the circle is embedded in R2. The parallel field in this case
is a constant field. Differentiating will yield nothing. Thus, the covariant derivative
∇γ′(t)Y = 0.

Example: In Figure 12b we assume that the unit circle is the meridian of S2. We also
assume that the meridian is parameterized by arc length. If we also assume that the
circle is parameterized clockwise, we notice that the vector field Y = {−y, x} is the
first derivative of our path. Recall that the second derivative of a path parameterized
by arc length is normal to the tangent space. The covariant derivative must therefore
be zero.

It can be shown that for a curve γ : I → M , t0 ∈ I and v0 ∈ Tγ(t0)M there always
exists a unique parallel vector field V along γ such that V (t0) = v0 [7, Th. 4.11,
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pg.60]. We will show that the geodesic curvature will be the rate of change of the
angle between the tangent vector of the curve and this parallel field:

Theorem 4.3 (do Carmo [5], Proposition 4, pg. 95). Suppose we have a 2-manifold
Σ and a regular curve γ : I → Σ parametrized by arc length. Suppose we have a
parallel vector field Y along γ and let φ be the angle between Y and γ′. Then

kg =
dφ

ds
.

Proof: We pick two local frames {e1, e2} and {ẽ1, ẽ2} as follows: Let e1 = Y
|Y | and

ẽ1 = γ′(s). Set e2 and ẽ2 such that both frames induce the same orientation. Let
w12(X) = 〈∇Xe1, e2〉 and w̃12 = 〈∇X ẽ1, ẽ2〉. From Lemma 3.1 it follows that

γ∗(w̃12 − w12) = γ∗τ = dφ.

Because Y is a parallel field along γ it follows that e1 is a parallel field along γ.
Therefore, ∇γ′(s)e1 = 0. Taking the inner product with e2 yields

γ∗w12 = w12(γ′(s)) = 〈∇γ′(s)e1, e2〉 = 0.

From this it follows that dφ = γ∗w̃12. The geodesic curvature becomes

kg = (γ∗w̃12)

(
∂

∂s

)
= dφ

(
∂

∂s

)
=

dφ

ds

and we conclude the proof. �

49



Andries Salm The Gauss-Bonnet Theorem

5 Proof of the Gauss-Bonnet theorem

We have developed all the tools we need to prove the Gauss-bonnet theorem. The
theorem states

Theorem 5.1 (do Carmo [5], Theorem 2, pg. 104). Let Σ be a compact oriented
2-manifold with boundary ∂Σ. Let X be any smooth vector field on Σ that is nowhere
tangent to ∂Σ. Assume that X has only singularities on its interior and assume all
singularities are isolated. Let p1, . . . , pk be the singularities of X and denote with
I1, . . . Ik the corresponding indices. Then for any Riemannian metric on our surface
the following holds: ∫

Σ

Kw1 ∧ w2 +

∫
∂Σ

kgds = 2π
k∑
i=1

Ii

Proof: Choose a Riemannian metric and define the following orthonormal frames:

• Let ẽ1 = X
|X| and let ẽ2 orthonormal to ẽ1 such that {ẽ1, ẽ2} has the same

orientation as Σ.

• Pick a neighborhood V ⊆ M of ∂Σ. Choose an orthonormal frame {e1, e2}
such that when we restrict it to the boundary of Σ we get that e1 is nowhere
tangent to ∂Σ.

Because all singularities are isolated, we can pick some balls Bi ⊂ Σ with center
pi such that all balls contain only one singularity. From Theorem 2.24 and Stokes
theorem follows that∫

Σ−∪iBi

Kw̃1 ∧ w̃2 = −
∫

Σ−∪iBi

dw̃12 =

∫
∪i∂Bi

w̃12 −
∫
∂Σ

w̃12.

Because all balls Bi are disjoint we get that∫
Σ−∪iBi

Kw̃1 ∧ w̃2 +

∫
∂Σ

w̃12 =
k∑
i=1

∫
∂Bi

w̃12

Now we take the limit when the radius of the balls goes to zero. Notice that w̃1 ∧ w̃2

is independent of the choice of frame and represents an ’area element’ of the surface.
Because the area of the balls tends to zero, the integral

∫
Σ−∪iBi

Kw̃1 ∧ w̃2 will tend

to
∫

Σ
Kw̃1 ∧ w̃2. Lemma 3.4 tells us that

∫
∂Bi

w̃12 goes to 2πIi when the radius will
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tend to zero.

The only thing yet to prove is that
∫
∂Σ
w̃12 =

∫
∂Σ
kgds. To show this let i : ∂Σ→ Σ

be the inclusion map and let φ be the angle between ẽ1 and e1. From Lemma 3.1
follows that

i∗w̃12 = i∗w12 + dφ.

Using this relation in
∫
∂Σ
w̃12 we get that∫

∂Σ

w̃12 =

∫
∂Σ

i∗w̃12 =

∫
∂Σ

i∗w12 +

∫
∂Σ

dφ

Notice that
∫
∂Σ
i∗w12 =

∫
∂Σ
kgds and

∫
∂Σ

dφ is integer valued. Because ẽ1 is nowhere
tangent to ∂Σ, the angle φ 6≡ 0 mod 2π for all points on the boundary. Thus, the
integral

∫
∂Σ

dφ is zero. From this we can conclude that

∫
Σ

Kw1 ∧ w2 +

∫
∂Σ

kgds = 2π
k∑
i=1

Ii

and we have proven the Gauss-Bonnet theorem. �

Notice that the left side of the equation is not dependent on the vector field and the
right hand side does not depend on the metric. Thus, the sum of isolated indices is
independent of vector field. In paragraph 3.3 we showed that the sum of indices is
equal to the Euler characteristic under the assumption that

∑
i Ii is independent of

vector field. Now have showed that this assumption is true and we can conclude that∫
Σ

Kw1 ∧ w2 +

∫
∂Σ

kgds = 2π
K∑
i=1

I = 2πχ(Σ)

Example: We will calculate the Euler characteristic for a unit sphere using the curva-
ture. Recall that the curvature of a unit sphere is 1. The area of this surface is equal
to 4π. Gauss-Bonnet theorem tells us that 4π = 2πχ(S2). From this it follows that
the Euler characteristic of a sphere is 2. This is the same for what we have seen in
chapter 3.3, where we have calculated the Euler characteristic using the alternating
sum of n-cells and using the sum of indices.
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Summary and Outlook

Summary

Let us summarize all the topics we have covered in this thesis. We start with surfaces
immersed in R3. Using paths we defined normal curvature as a curvature in a direc-
tion. We also defined the Gaussian curvature K as the determinant of the differential
of the normal map N . From the properties of N we found that K is equal to the
product of the extreme values of the normal curvature.

Secondly we investigated how the Gaussian curvature depends on the ambient space.
We introduced the notion of connections and we discovered that there exists a unique
linear symmetric connection which is compatible with the metric. Using this con-
nection we defined the 1-form wij(X) = 〈∇Xei, ej〉. From the structure relations
we found that the Gaussian curvature could be written as dw12(e2, e1). From this it
follows that K only depends on the induced metric. We had proven Gauss Egregium.

Next we investigated how K depends on choice of frames. The Gaussian curvature is
independent of frame, but w12 will change. In chapter 3 we found that the difference
was related to the index of singularities and the sum of this topological quantity turned
out to be the Euler characteristic.

In the mean time we generalized the notion of curvature for Riemannian n-manifolds.
It turned out that the Riemann curvature tensor applied to (e1, e2, e2, e1) was equal
to the Gaussian curvature for Riemannian 2-manifolds.

Second to last we defined the geodesic curvature as the projection of the second
derivative to the tangent plane. We showed that this curvature measures the change
of angle between a path and the parallel field of that path.

Finally, we proved the Gauss-Bonnet theorem. The trick was to do a change of frame.
From the extra terms that were introduced we related

∫
Σ
KdA to the sum of indices,

which were then related to the Euler characteristic. We proved that

∫
Σ

KdA+

∫
∂Σ

kgds = 2πχ(Σ).

52



5 PROOF OF THE GAUSS-BONNET THEOREM Andries Salm

Outlook

In 1944 Chern published a paper showing that the proof of Gauss-Bonnet can be
extended to smooth manifold without boundary of even dimension [3]. Given a Rie-
mannian manifold (M, g) we could calculate the curvature tensor and from that the
related curvature forms Ωij using the definition:

R∇(ei) =
n∑
j=0

Ωij ⊗ ej

From this he defined the top form Ω to be the square root of det(
Ωij

2π
)[4, Def. 2.9.2,

pg. 135]. In explicit formula it is equal to:

Ω =
(−1)

n
2
−1

2nπ
n
2 (n

2
)!

∑
εi1 . . . εinΩi1i2 ∧ Ωi3i4 ∧ . . . ∧ Ωin−1in

Using the same tricks as above - pick a vector field and remove small balls around the
singularities and let the radius of the balls tend to zero - he proved that∫

M

Ω = χ(M).

Using this we can relate the generalized Gauss-Bonnet theorem to the field of charac-
teristic classes. The idea is that Ω is a representative in H2q(M,R) where Hk is the
de Rham cohomology. The class it represents is called the Euler class [4, Def. 2.9.2,
pg. 135].

In this thesis we started with the everyday problem of holding a pizza slice. It was a
starting point in the study of curvature. We have found results that Gauss, one of
the greatest mathematicians, could not describe it in any other way than by calling it
surprising! So remember next time when you eat your pizza that what you are eating
contains a vast amount of mathematics.
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