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Abstract

In this thesis, we construct families of gravitational instantons of type ALG, ALG*,
ALH and ALH*. Away from a finite set of exceptional points, the metric collapses
with bounded curvature to a quotient of R3 by a lattice of rank one or two and
Z2. Depending on whether the gravitational instantons are of type ALG/ALG* or
ALH/ALH*, there are two or four exceptional points respectively that are modelled
on the Atiyah-Hitchin manifold. The other exceptional points are modelled on the
Taub-NUT metric. There are at most four, respectively eight, of these points in
each case. These gravitational instantons are constructed using a gluing construc-
tion, where we combine these ALF gravitational instantons to a bulk space that
is constructed using the Gibbons-Hawking ansatz. We then set up a deformation
argument, where we perturb these approximate solutions into genuine gravitational
instantons.
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Impact statement

The study of hyperkähler manifolds has a long and rich history. It started in
the 70’s when Eguchi & Hanson (1978) and Yau (1978) gave the first non-trivial
examples. It took however more than 40 years before Sun & Zhang (2021) classified
all gravitational instantons. Due to the work of Kronheimer (1989b), Chen & Chen
(2021a), Chen & Viaclovsky (2021), Chen & Chen (2021b), T. Collins et al. (2022)
and Lee & Lin (2022) we now have a Torelli theorem for each type of gravitational
instanton. Although all metrics are now classified, degeneration of these structures
is not well understood. By the explicit nature of our construction, we can study
the boundary of the moduli space in more detail.

The study of gravitational instantons is also useful in other fields. For example,
according to Cherkis & Kapustin (1999), Cherkis & Kapustin (2003) and Cherkis &
Ward (2012) gravitational instantons appear in gauge theory, because they arise as
moduli spaces of (periodic) monopoles with Dirac singularities. Another example is
due to Hawking (1979), where he explained that gravitational instantons are used
in physics for understanding the quantisation of gravity.
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Unless the Lord builds the house,
the builders labor in vain.

Psalm 127:1 (NIV)
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1 Introduction

Gravitational instantons are examples of hyperkähler manifolds, which are Rieman-
nian manifolds with three compatible complex structures satisfying the quaternion
relations. In particular, gravitational instantons are complete, non-compact hyper-
kähler manifolds of dimension four, with L2 bounded curvature. In the late 70’s,
the first constructions of gravitational instantons were found, and in 1989 Kron-
heimer (1989b) classified of all asymptotically locally euclidean (ALE) gravitational
instantons, which have maximal volume growth. Over the years other, non-ALE,
gravitational instantons were also found and recently Sun & Zhang (2021) showed
that, depending on the asymptotic metric, all gravitational instantons can be clas-
sified as ALE, ALF, ALG, ALG*, ALH and ALH*. Their volume growth is of order
r4, r3, r2, r2, r and r4/3 respectively. For ALG* and ALH* the curvature decay is
quadratic, while in the other classes it is faster than quadratic.

In this thesis, we propose a new construction for gravitational instantons for the
classes ALG, ALG*, ALH and ALH*. To construct these, we will use a gluing
method in geometry, which was pioneered by the work of Taubes (1982) in gauge
theory. Namely, we start with a non-complete hyperkähler manifold as our bulk
space and combine it with other gravitational instantons using the connected sum
construction. After interpolating the metrics we get an approximate solution, and
by a perturbation argument we make it into a genuine hyperkähler manifold. The
idea for which spaces to glue in is due to Sen (1997). He proposed to use n copies
of Taub-NUT and one copy of the Atiyah-Hitchin space as ‘bubbles’ and use the
construction by Gibbons & Hawking (1978) to create the ‘bulk space’. This proposal
was carried out rigorously by Schroers & Singer (2021).

Recall that the Gibbons-Hawking ansatz is a general construction for hyperkähler
metrics on circle bundles over 3-dimensional manifolds with a triple of parallel,
orthonormal vector fields. In Sen’s construction, the 3-dimensional manifold is R3 \
{0,±p1, . . . ,±pn} for some distinct pi ̸= 0. This gluing construction can be done
with base spaces other than subsets of R3. For example, Foscolo (2019) used Sen’s
method on a punctured T 3 in order to construct hyperkähler metrics on the K3
surface. In this thesis, we will consider similar cases: We will apply Sen’s method
on R3 modulo a lattice of rank one or two. Although this looks like a minor change,
the analysis changes dramatically and we have to study each situation separately.
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The statement of our main theorem is as follows:

Theorem 1.1. Let L ⊂ R3 be a lattice of rank one or two and consider the
Z2 action on R3/L that is induced by the antipodal map on R3. Let {pi} be a
configuration of n distinct points in (R3/L − Fix(Z2))/Z2. Suppose that n ≤ 4

when R3/L ≃ R2 × S1 and n ≤ 8 when R3/L ≃ R × T 2. Then, there exists
an ϵ0 > 0, such that for all 0 < ϵ < ϵ0 there exist a gravitational instanton
(MR3/L,n, gϵ) with the following properties:

1. For each fixed point of the Z2 action on R3/L, there is a compact set K ⊂
MR3/L,n, such that ϵ−2gϵ approximates the Atiyah-Hitchin metric on K as
ϵ→ 0.

2. For each i ∈ {1, . . . , n}, there is a compact set Ki ⊂MR3/L,n such that ϵ−2gϵ

approximates the Taub-NUT metric on Ki as ϵ→ 0.

3. Away from the singularities, the manifold collapses to (R3/L)/Z2 with
bounded curvature as ϵ converges to zero.

4. Depending on the lattice and n, the asymptotic metric can be classified as

• ALG*-I∗4−n when dimL = 1 and n < 4,

• ALG 1
2

when dimL = 1 and n = 4,

• ALH*8−n when dimL = 2 and n < 8,

• ALH when dimL = 2 and n = 8.

The explicit definitions of ALG, ALG*, ALH and ALH* will be given in Section 3.5,
where we will compare our metrics with existing literature. In order to examine the
similarities and differences between our work and Schroers & Singer (2021), we also
consider the case L = {0} and put their work in the same systematic framework as
the new cases in Theorem 1.1.
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Overview of the chapters

In the first part of Chapter 2, we introduce gravitational instantons and give some
basic properties. We explain the different types of gravitational instantons and we
give several examples of their construction. In order to describe the asymptotic
metric, we explain the construction by Gibbons and Hawking.

In our examples we will focus especially on the Taub-NUT space and the Atiyah-
Hitchin manifold. Furthermore, we explain the gauge-theoretic definition of the
Atiyah-Hitchin manifold and how the asymptotic metric on the branched double
cover relates to a Taub-NUT metric with negative mass. We also revisit its topol-
ogy and the different circle fibrations the Atiyah-Hitchin manifold possesses.

In the second part of Chapter 2, we explain the gluing construction. First we give a
general overview of the main steps. Secondly, we show how the hyperkähler property
can be formulated in terms of orthonormal triples of closed self-dual 2-forms. Using
this description, we setup a perturbation problem and we demonstrate how the hy-
perkähler condition can be rephrased as an elliptic equation. We claim that up to
a small error, the linearised version of this elliptic equation is just the Laplacian on
functions and this Laplacian will be the main focus in our analysis.

In Chapter 3 we construct the underlying manifold and equip it with an approximate
hyperkähler metric satisfying the required asymptotics at infinity. In Section 3.1 we
construct the bulk space using the Gibbons-Hawking ansatz and we show it has the
properties we require. In Section 3.2 we deviate from the main topic and consider
the degrees of freedom we have in our construction of the bulk space. In Section
3.3 we return to the main topic and introduce the collapsing parameter by which
we can control the error. In Section 3.4 we apply the connected sum construction.
We show the metrics can be interpolated in such way that we can apply the pertur-
bation method described in Chapter 2. Moreover, we explain how the asymptotic
behaviour of the bulk space gives us an error estimate for the approximate solution.

In Section 3.5 we calculate the topology of our manifolds and explain the argument
by Sen (1997) to show that the intersection matrix of an ALF-gravitational instanton
produced by his suggested gluing construction, is the Cartan matrix of a Dk-Dynkin
diagram. We extend his argument and show how the intersection matrices for our
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ALG/ALG* gravitational instantons relate to the extended Dk-Dynkin diagrams.
We also calculate the homology of our ALH/ALH* gravitational instantons. We
compare our results to the known classifications of gravitational instantons and we
conclude that our degrees of freedom coincide with the dimensions of the moduli
spaces for each type of gravitational instanton. By calculating the monodromy at
infinity, we show that our ALG/ALG* gravitational instantons can be compactified
by adding an elliptic I∗k -fiber. Similarly we show that our ALH/ALH* gravitational
instantons can be compactified by adding an elliptic Ik-fiber.

In chapter 4 we set up the weighted analysis on the asymptotic region of the com-
plete, almost hyperkähler manifold using the structure of the Gibbons-Hawking
ansatz. Despite the different asymptotic structures, we give an approach that is
uniform for ALF, ALG, ALG*, ALH and ALH*. We do this by finding the cor-
rect conformal rescaling such that the universal cover over a fixed set of charts has
bounded geometry. We rephrase our linearised operator in terms of a weighted op-
erator and we show that it is bounded and strictly elliptic.

In Section 4.2 we give a general method to convert a standard elliptic estimate on
Rn to a local elliptic estimate in our weighted spaces. By applying this framework,
we get all the local elliptic regularity estimates we need. In Section 4.3 we com-
bine these local estimates into estimates on the whole asymptotic region. Using the
Poincaré inequality we improve these results so that they imply the Laplacian is
Fredholm. We use these results in Section 4.4 and calculate the kernel and co-kernel
explicitly for small weights. We see that for our ALF gravitational instantons there
is a certain range of weights where the operator is bijective. For the other cases
we have an index of ±1 for the weights we are interested in. Using the explicit
description of the kernel, we manually change the domain, making the Laplacian an
isomorphism.

In Chapter 5 we finalise the analysis and give the main proof of the theorem. In
Section 5.1 we extend our weighted norms on the asymptotic region to the whole
space and show that the Laplacian is still a bounded, strictly elliptic operator.
Although any compact extension will yield this result, extra care is taken in order to
apply the bounded inverse estimate in Section 5.4. In Sections 5.2 and 5.3 we extend
our elliptic estimates globally and we show that the Laplacian is still Fredholm. In
Section 5.2 we focus on the Sobolev norm, and using our understanding of the (co)-
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kernel on the asymptotic region we show the bijectivity of the Laplacian between
certain weighted spaces. In Section 5.3 we show that the same result holds for
Hölder spaces. In Section 5.5 we finalise the proof of the main theorem. We set up
the Banach spaces on which we do the perturbation argument and we show that
the conditions for the inverse function theorem are satisfied. We also show that the
linearised operator in this perturbation argument indeed approximates the standard
Laplacian on functions and hence it is also invertible with a bounded inverse. This
proves our main theorem.
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2 Background

In this thesis we propose a new method of constructing gravitational instantons.
Before we delve into the construction, we first explain what gravitational instan-
tons are, list some main properties and give some examples. We focus on examples
constructed via the Gibbons-Hawking ansatz and on the Atiyah-Hitchin manifold,
because these will be fundamental building blocks in our new construction. Also,
the Gibbons-Hawking ansatz is used to describe the asymptotic structure of many
gravitational instantons and is needed to understand the classification by Sun &
Zhang (2021).

In the second part of this chapter we give a pictorial explanation of our construction.
We explain the gluing construction for gravitational instantons and show how to turn
this gluing problem into an elliptic equation. In later chapters we set up the analysis
to solve this equation.

2.1 Gravitational instantons

We use the following definitions of a hyperkähler manifold and of a gravitational
instanton:

Definition 2.1. A hyperkähler manifold (M, g, I, J,K) is a 4n-dimensional, Rie-
mannian manifold (M, g) with three integrable complex structures I, J and K

such that

• I, J , and K are Kähler with respect to g, and

• I, J , and K satisfy the quaternion relations

I · J = K, J ·K = I, K · I = J,

J · I = −K, K · J = −I, I ·K = −J.

Definition 2.2. A gravitational instanton is a 4-dimensional, complete, non-
compact hyperkähler manifold (M, g, I, J,K) such that the Riemann curvature
tensor Rm is L2-bounded.

12
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Hyperkähler manifolds are already interesting in their own right. For example,
they show up as a special case in the classification of Riemannian manifolds by
Berger (1953): He showed that the holonomy of a simply connected, irreducible
and non-symmetric Riemannian manifold can only be one of SO(n), U(n), SU(n),
Sp(n) ·Sp(1), Sp(n), G2 or Spin(7). The class corresponding the compact symplec-
tic group Sp(n) corresponds to hyperkähler metrics. This is because Sp(n) can be
viewed as the set of all n× n matrices with entries in H that preserve the standard
hermitian inner product on Hn. From this identification of Hn we get three almost
complex structures I, J and K on M , which must be compatible with the metric g.
These complex structures are parallel and hence the Riemannian manifold must be
hyperkähler.

Because Sp(n) is a subgroup of SU(2n), Hyperkähler manifolds are examples of
Calabi-Yau manifolds. These are Kähler manifolds (M, g, I) with a non-vanishing,
parallel, holomorphic volume form Ω. For hyperkähler manifolds this volume form
can be explicitly identified. Namely, if ωJ and ωK are the Kähler forms correspond-
ing to J and K, then one can choose Ω = (ωJ + iωK)

n as the holomorphic volume
form. For dimension 4, Sp(1) = SU(2), and so 4-real-dimensional hyperkähler man-
ifolds are the same as 4-real-dimensional Calabi-Yau manifolds.

In four dimensions, one can decompose Ω2 into the self- and anti-self-dual forms and
one can write the Riemann curvature operator as

Rm =

(
W+ + Scal

12
R̊ic

R̊ic W− + Scal
12

)
,

where Scal is the Scalar curvature and R̊ic is the traceless Ricci curvature. For
Calabi-Yau manifolds, the Ricci tensor vanishes, so the traceless Ricci curvature
and the scalar curvature vanishes too. Furthermore, the self-dual part of the Weyl
tensor is also zero, because Λ+ is trivialised by the three (parallel) Kähler forms.
Therefore, the Riemann curvature tensor is anti-self-dual. Using the extra condition
that

∫
|Rm |2 is bounded, one can view gravitational instantons as minimisers of the

Yang-Mills like action g 7→
∫
Rm∧ ∗Rm. Because of this similarity with the Yang-

Mills instantons, complete 4-dimensional hyperkähler manifolds with L2 bounded
curvature are called gravitational instantons.
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The Gibbons-Hawking ansatz

In order to give some non-trivial examples of gravitational instantons, we explain
the construction by Gibbons & Hawking (1978). Their construction starts with the
following information:

1. An open subset U in R3, equipped with the Euclidean metric gU ,

2. a principal S1-bundle P over U ,

3. a connection η on P , and

4. a harmonic function1 h : U → (0,∞) satisfying the Bogomolny equation

∗gU dh = d η.

In their paper, Gibbons and Hawking show

Proposition 2.3. The metric gGH = h gU + h−1η2 on P is hyperkähler.

This construction is called the Gibbons-Hawking ansatz. Some of the requirements
above are redundant. Namely, if U is an open subset of R3 and h is a positive har-
monic function, then ∗ dh is closed and [∗ dh] is an element in de Rham cohomology.
We claim that if [∗ dh] ∈ H2(U,Z), we can construct the principal bundle P and
find a connection η satisfying the Bogomolny equation. Indeed, all circle bundles are
uniquely classified by the first Chern class, and hence P is uniquely determined by
c1 = [∗ dh]. Moreover, every principal bundle admits a connection η and by adding
some element of Ω1(U), we can always assume that d η = ∗ dh. In summary, for the
Gibbons-Hawking ansatz we only need

1. an open subset U in R3, and

2. a positive harmonic function that satisfies [∗ dh] ∈ H2(U,Z).

Proof of Proposition 2.3. In order to define the complex structures on P , it is suffi-
cient to define the Kähler forms. Equipping R3 with the standard coordinates {xi},
we define

ωi = dxi ∧ η + h ∗gU dxi

1i.e. ∆h = 0 where ∆ is the Laplacian.
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For example ω1 = dx1 ∧ η + h dx2 ∧ dx3. Each form ωi defines an endomorphism
Ii on TM such that I∗i η = h dxi and

I∗i dxj =

−1
h
η i = j

− sgn(ijk) dxk i ̸= j.

Therefore Ii are almost complex structures on P that satisfy the quaternion relations.

To show that these complex structures are integrable, we need to show that the
exterior derivative is a map between Ω1,0 and Ω2,0 ⊕ Ω1,1. Hence for any α ∈ Ω1,0

and β ∈ Ω2,0, we need to show ⟨dα, β̄⟩ = 0. We claim that ωC = ωj + iωk is a basis
for Ω2,0, because for any X ∈ Γ(Λ0,1TP ),

ωj(X, . . .) + iωk(X, . . .) = g(JX, . . .)− ig(JIX, . . .) = g(JX, . . .)− g(JX, . . .) = 0.

With respect to the metric gGH , the 2-forms ωi are self dual and so ⟨dα, ω̄C⟩ =

dα∧ωC. By the Bogomolny equation, the 2-forms ωi are closed and hence ⟨dα, ω̄C⟩ =
d(α∧ωC). This vanishes, because α∧ωC ∈ Ω3,0 on a 2-complex-dimensional manifold.

The simplest example of the Gibbons-Hawking ansatz is when U = R3 and h is
constant. The first Chern class h induces is zero and so the Gibbons-Hawking ansatz
gives a flat hyperkähler metric on R3 × S1. From the formula gGH = h · gU + h−1η2,
it follows that the circle radius is inversely proportional to the constant value of h.

ALE-type gravitational instantons

The next example we explain is for U = R3 \ {0} and h(x) = k
2|x| . In order to con-

firm [∗ dh] ∈ H2(U,Z), we determine when − 1
2π

∫
S2 ∗ dh is an integer2. The factor

in the denominator in h is chosen such that − 1
2π

∫
S2 ∗ dh is exactly k and hence

[∗ dh] ∈ H2(U,Z) if and only if k ∈ Z. Notice that ∗ dh = k
2
VolS2 does not depend

on the radial parameter in R3. Hence P is diffeomorphic to R+ times a degree k
circle bundle over S2.

The Gibbons-Hawking metric for this case is gGH = k
2r
(d r2 + r2gS2) + 2r

k
η2. If we

2The sign is due to the identification of R with u(1).
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reparametrise this by s =
√
2kr, then

gGH = d s2 + s2
(
1

4
gS2 +

1

k2
η2
)
.

The part between brackets is an s-invariant metric on the circle bundle over S2. By
identifying this circle bundle with the Hopf projection p 7→ pip̄ from S3 ⊂ H to
S2 ⊂ imH, quotiented by the Zk action p ∼ p · e 2πi

k , one concludes that 1
4
gS2 + 1

k2
η2

is the standard metric on S3/Zk. Therefore, gGH is just the flat metric on R4/Zk.
This metric is not complete, but can be completed by adding a single point when
k = 1.

A nice feature of the Gibbons-Hawking ansatz is its additive property: Given two
positive harmonic functions h1, h2 : U → R, both inducing integral cohomology
classes, their sum does too. For example, pick x0 ∈ R3 \ {0} and consider the
positive harmonic function h1(x) = 1

2|x| on U = R3 \ {0, x0}. By Stoke’s theorem
one can check ∗ dh1 induces an integral cohomology class on U . By the rotation and
translation invariance of the Laplacian h2(x) = 1

2|x−x0| is also a positive harmonic
function and it also induces an integral cohomology class on U . Because cohomology
classes and the space of harmonic functions are both Z-linear, h(x) = 1

2|x| +
1

2|x−x0|

is a positive harmonic function and [∗ dh] ∈ H2(U,Z). Therefore, we can apply the
Gibbons-Hawking Ansatz on h and the Gibbons-Hawking metric is

gGH =

(
1

2|x|
+

1

2|x− x0|

)
gU +

(
1

2|x|
+

1

2|x− x0|

)−1

η2.

Just as in the previous example, we can complete this space by adding points. At
the boundary at infinity, the manifold decomposes as a radial parameter and a de-
gree 2 circle bundle over S2. Here the metric approximates the flat metric on R4/Z2,
because for large values of x, 1

2|x| +
1

2|x−x0| ≃
2

2|x| .

According to Prasad (1979), this metric is the Eguchi-Hanson metric on T ∗S2. To
see the generator of H2(T

∗S2), one considers a path between 0 and x0. Outside the
singularities, the total space retracts to a trivial circle bundle over the open path,
which is topologically a cylinder. At the endpoints the harmonic function h diverges
to infinity, which has the effect that the circle radius collapses at these points. This
creates a sphere that generates H2(T

∗S2).
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There is nothing stopping us from repeating the procedure in the last example. The
Gibbons-Hawking metric related to h =

∑k
i=1

1
2|x−pi| for some distinct p1, . . . , pk ∈ R3

yields a gravitational instanton that near infinity approximates the flat metric on
R4/Zk. Moreover, it retracts to a chain of wedge sums of k − 1 two-spheres. In the
literature these spaces are called multi-Eguchi-Hanson spaces.

All the examples above have the property that up to some small error they approx-
imate the flat metric on R4 near infinity. These examples are part of a single class
of gravitational instantons called ALE:

Definition 2.4. A gravitational instanton (M, g) is called Asymptotically Locally
Euclidean (ALE) if there is a finite subgroup Γ of SU(2), two large compact sets
K1 ⊂M and K2 ⊂ C2/Γ and a diffeomorphism φ between M \K1 and (C2/Γ)\K2

such that on these asymptotic regions

∥∇k(φ∗g − gC2/Γ)∥gC2/Γ = O(r−4−k)

for all k ∈ N.

All ALE gravitational instantons were constructed by Kronheimer (1989a). His
method makes use of the hyperkähler quotient construction. This is a generalisation
of the Kähler quotient for hyperkähler manifolds. Namely, consider a hyperkähler
manifold (M, g) and a Lie group G that acts preserving on the triple of Kähler
forms ω1, ω2 and ω3. Also assume that each Kähler form ωi has a moment map
µi : M → g∗. That is, µi : M → g∗ is a G-equivariant function such that for each
ξ ∈ g, the vector field Xξ generated by ξ satisfies ιXξ

ωi = d⟨µi, ξ⟩. Just as the
Kähler quotient, for each regular value η of µ := (µ1, µ2, µ2) : M → g∗ ⊗ R3, the
space µ−1(η)/G is a smooth manifold and (g, ω1, ω2, ω3) descends to a hyperkähler
structure on the quotient.

Kronheimer started with a finite subgroup Γ of SU(2). Given this group he consid-
ered the finite dimensional Hilbert space R = L2(Γ), its unitary group U(R) and its
Lie algebra u(R). Inside u(R)⊗H he considered the linear subspace (u(R)⊗H)Γ of all
elements that are invariant under the Γ action and he used this as the flat hyperkäh-
ler manifold on which he applied the hyperkähler quotient construction. The group
U(R) acts on u(R)⊗H by conjugation and its stabilizer is the subgroup consisting of

17



W.A. (Andries) Salm 2. Background

scalar multiplication and therefore, PU(R) := U(R)/S1 acts freely on u(R)⊗H. In-
side PU(R), Kronheimer considered the subgroup of all invariant elements that com-
mute with Γ as the quotient group. For any A = A0+iA1+jA2+kA3 ∈ (u(R)⊗H)Γ

he used the moment maps

µ1(A) =[A0, A1] + [A2, A3],

µ2(A) =[A0, A2] + [A3, A1],

µ3(A) =[A0, A3] + [A1, A2].

This way he constructed a hyperkähler metric on the minimal resolution C̃2/Γ of
C2/Γ. By studying the irreducible representations of (u⊗H)Γ and using the McKay
correspondence, Kronheimer showed that these gravitational instantons can be re-
alised as a quiver variety, where the quiver is the affine Dynkin diagram associated
to Γ.

Kronheimer (1989b) also classified all ALE gravitational instantons and showed that
the construction in Kronheimer (1989a) produces all examples of ALE gravitational
instantons. Namely, up to some non-degeneracy condition, there is a hyperkähler
structure (g, ω1, ω2, ω3) for every (σ1, σ2, σ3) ∈ H2(C̃2/Γ,R) ⊗ R3 such that [ωi] =

σi. This hyperkähler structure is unique up to tri-holomorphic isomorphisms. The
necessity of the non-degeneracy condition can already be seen for the Eguchi-Hanson
metric. Namely, when the singularity x0 tends to 0, the volume of S2 collapses and
the metric becomes the singular metric of R4/Z2. To exclude this case, one has to
describe x0 using topological terms. This can be done by integrating the Kähler
forms over S2. Indeed, except for the endpoints, the 2-sphere can be viewed as the
trivial circle bundle over the straight line between 0 and x0. Hence,

xi0 =
1

2π

∫
S2

dxi ∧ η =
1

2π

∫
S2

ωi = σi(S
2).

In general one requires that (σ1(Σ), σ2(Σ), σ3(Σ)) ̸= 0 for all Σ in H2(C̃2/Γ,Z) with
self-intersection -2.

Remark 2.5. The classification result by Kronheimer is an example of a Torelli
theorem. In these theorems one identifies all metrics up to triholomorphic isometries
in terms of their model at infinity and their periods, i.e. the integrals of the Kähler
forms over the 2-cycles with self-intersection -2. In general, one also has a non-
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degeneracy condition, as in the ALE case.

ALF-type gravitational instantons

Next we will give an example of the Gibbons-Hawking ansatz that is not ALE. For
this we consider the harmonic function c + 1

2r
for some constant c > 0. By the

additive property of the Gibbons-Hawking ansatz, this is a hyperkähler manifold
and, as before, it can be completed into a gravitational instanton by adding a single
point. The Gibbons-Hawking metric is

gGH = (c+ (2r)−1)gR3\{0} +
1

c+ (2r)−1
η2.

Near infinity the metric approximates the cylindrical metric c · gR3\{0} + 1
c
η2 on

R+ × S3. The value of c−
1
2 is proportional to the circle radius of a fiber. This

gravitational instanton cannot be ALE, because the circle radius of a fiber does not
grow linearly but converges to a constant. Also, the volume growth of a ball of
radius r is of order r3 instead of r4. This metric was found by Taub and extended
by Newman, Unti and Tamburino. It is called the Taub-NUT space and it is an
example of an ALF-type gravitational instanton.

Definition 2.6. A gravitational instanton (M, g) is of type ALF-Ak if there are
ϵ, c > 0, k ∈ Z>0 and a diffeomorphism φ between the asymptotic regions of M
and the Gibbons-Hawking space for h(x) = c+ k

2|x| on R3 \ {0} such that

∥∇j(φ∗g − gGH)∥gGH = O(r−j−ϵ)

for all j ∈ N. If instead there is a diffeomorphism between the asymptotic regions
of M and a Z2 quotient of the Gibbons-Hawking space for h = c + 2k−4

2|x| and this
Z2 quotient is a lift of the antipodal map on R3, then we say the gravitational
instanton (M, g) is of type ALF-Dk. In general we call a gravitational instanton
Asymptotically Locally Flat (ALF) if it is of type ALF-Ak or ALF-Dk.

All ALF-Ak gravitational instantons are classified by Minerbe (2011): They all arise
by the Gibbons-Hawking ansatz for h = c +

∑n
i=1

1
2|x−pi| for some set of distinct

points pi ∈ R3. These spaces are also known as multi-Taub-NUT spaces. Similarly
to the multi-Eguchi-Hanson space, the multi-Taub-NUT space retracts to a chain
of wedge sums of 2-spheres. The intersection matrix is the negative Cartan matrix
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for an Ak-Dynkin diagram. A similar result is true for ALF-Dk type gravitational
instantons.

A famous example of an ALF-D0 gravitational instanton is the Atiyah-Hitchin
manifold. It is the moduli space of centred magnetic monopoles of charge 2. To
understand this, we consider an SU(2)-connection A over R3 and a Higgs field
ϕ : R3 → su(2) that minimises the Yang-Mills-Higgs energy

∫
R3 ∥FA∥2 + ∥DAϕ∥2.

By assuming |FA| = O(r−2) and |ϕ| = 1 + k
2r

+ O(r−2) for some k ∈ N, we force
the energy to be finite. With these decay conditions, the energy functional can be
rewritten as ∫

R3

∥FA∥2 + ∥DAϕ∥2 =
∫
R3

∥FA − ∗DAϕ∥2 ± 8πk

and hence the pair (A, ϕ) minimises the Yang-Mills-Higgs energy if and only if it
satisfies the Bogomolny equation FA = ∗DAϕ. The space of pairs (A, ϕ) form an
infinite dimensional space, however the gauge orbits have finite co-dimension. The
moduli space Nk of magnetic monopoles of charge k is the quotient of the space of
pairs (A, ϕ) and the group of all gauge transformations and it is (4k−1)-dimensional.

The energy functional is invariant under translations on R3. The quotient of Nk by
the translation action is called the moduli space of centred magnetic monopoles of
charge k. This space, which we denote by M0

k is (4k− 4)-dimensional and it is com-
plete. In our study of gravitational instantons we only focus on the 4-dimensional
manifolds and so we define the Atiyah-Hitchin manifold as M0

2 .

The metric on the Atiyah-Hitchin manifold can be defined using an infinite dimen-
sional version of the hyperkähler quotient construction. Namely, pairs (A, ϕ) : R3 →
su(2)⊗ R4 form an infinite dimensional vector space and one can equip this with a
quaternionic structure by identifying (Ai dxi, ϕ) as ϕ + A1 I + A2 J + A3 K. The
three components of the Bogomolny equation FA − ∗DAϕ can be viewed as mo-
ment maps for the group of all gauge transformations G. In order to make sense
of the quotient µ−1(0)/G between infinite-dimensional spaces, one has to study the
deformation problem

Ω0(g)
d1−→ Ω1(g)⊕ Ω0(g)

d2−→ Ω2(g)

where d2 is the linearized Bogomolny equation and d1 arises from the infinitesimal
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gauge transformations. With the requirement that variations of (A, ϕ) are square
integrable, this becomes a Fredholm complex. After we restrict G to the group G ′

of gauge transformations whose Lie-algebra elements decay with order r−1, the quo-
tient Mk := ∩iµi(0)/G ′ becomes a 4k-dimensional hyperkähler manifold.

The group G ′ is a proper subgroup of G and it turns out that Mk is a circle bundle
over Nk. Moreover, on the universal cover, the translation and S1 action span a
flat quaternionic space. Therefore, the centred moduli space M0

k = Mk

S1×R3 has a
hyperkähler structure.

The rotations of R3 induce an isometric action of SU(2) on M0
k that rotates the

complex structures. This enabled M. Atiyah & Hitchin (1988) to write their metric
in the form

gAH = (abc)2 d s2 + a2σ2
1 + b2σ2

2 + c2σ2
3,

where a, b, c are functions on the Atiyah-Hitchin manifold and σi is the basis of the
left invariant 1-forms. They solved this explicitly in terms of elliptic integrals and
gave its asymptotic expansion: On the branched double cover at infinity this metric
approximates the Taub-NUT metric with negative mass −4

gTN ′
:= (1− 2/r)(d r2 + r2gS2) +

1

1− 2/r
η2

up to exponentially small terms.

Topology and orbits of the Atiyah-Hitchin manifold

To explain the orbits induced by the rotation action on R3 and the topology of the
Atiyah-Hitchin manifold, we refer to the work of Schroers & Singer (2021). In their
appendix they studied CP 1 × CP 1 with the SU(2) action acting diagonally. In-
side they identified two copies of CP 1, calling them the diagonal and anti-diagonal.
They define the Atiyah-Hitchin manifold as the complement of the anti-diagonal,
quotiented by some Z2 × Z2 action. We will explain these things in more detail.

We consider CP 1 as the space of unit quaternions quotiented by the left multiplica-
tion of the circle action eiϕ. Using the Hopf projection p 7→ p̄ip, one can identify an
element of CP 1 × CP 1 as (q̄iq, p̄ip) for some p, q ∈ SU(2). In this representation,
the diagonal SU(2)-action acts as (q̄iq, p̄ip)

r∈SU(2)7−−−−−→ (r̄ q̄iq r, r̄ p̄ip r). We claim that
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each orbit for this diagonal SU(2) action has a unique representative of the form
(iejϕ, i) for some ϕ ∈ [0, π/2]. Indeed, pick an element (q̄iq, p̄ip) ∈ CP 1 × CP 1.
For any θ ∈ R, we can use the diagonal SU(2) action to perform the transformation

(q̄iq, p̄ip)
p̄eiθ7−−→ (e−iθp·q̄iq ·p̄eiθ, i). Because qp̄ is a unit quaternion, pq̄iqp̄ ∈ imH, and

so pq̄ i qp̄ can be written as ix+ vk for some x ∈ [−1, 1] and v ∈ C. Next we choose
θ such that v is a non-negative real number. In polar coordinates this simplifies to
(ie2jϕ, i), which proves our claim. In general, an element inside CP 1 × CP 1 can be
written as (p̄ie2jϕp, p̄ip) for some p ∈ SU(2) and ϕ ∈ [0, π/2].

When ϕ = 0, all elements in the orbit are of the form (p̄ip, p̄ip), and hence this
orbit is isomorphic to CP 1. We denote this orbit of diagonal elements as CP 1

diag.
Similarly, for ϕ = π

2
, all elements in the orbit are of the form (−p̄ip, p̄ip), and hence

we denote this orbit of anti-diagonal elements as CP 1
adiag. In general the SU(2)-

orbit is isomorphic to SU(2)/Z2, because (p̄ie2jϕp, p̄ip) is invariant under the action
p 7→ −p. In summary, we have the following representations and orbits:

CP 1
diag CP 1

adiag

ϕ 0

Unique rep. (i, i)

Orbit SU(2)
⟨eiϑ⟩

ϕ

(iejϕ, i)
SU(2)
⟨±1⟩

π/2

(k, i)
SU(2)
⟨eiϑ⟩

Schroers & Singer (2021) identified a Z2 ×Z2 action that is generated by two maps.
First they consider the switching map s, that interchanges the values of the CP 1’s
inside CP 1 × CP 1. Secondly, they consider the map a that acts by the antipodal
map on each component simultaneously. They denote the composition of s and a

by r.

We claim we can identify the maps s, a and r by left multiplication of some unit
quaternion. Indeed, for the Hopf fibration p 7→ p̄ip, the action by p 7→ j p descends
to the antipodal map on the base space. Therefore, we identify the map a with
p 7→ j p. Similarly, the SU(2) action p 7→ iejϕp transforms an element (p̄ie2jϕp, p̄ip)
into (p̄ip, p̄ie2jϕp), which is the same as the switching map s. The composition r of
these maps must be given by p 7→ −kejϕp. Notice that the triple {−kejϕ, j, iejϕ} is
a rotation of the standard {i, j, k} triple and so define

ı̂ = −kejϕ, ȷ̂ = j, and k̂ = iejϕ.
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In summary, we have:

CP 1
diag CP 1

adiag

ϕ 0

Orbit SU(2)

⟨ek̂ϑ⟩

s-action p 7→ k̂p

r-action p 7→ ı̂p

a-action p 7→ ȷ̂p

ϕ
SU(2)
⟨±1⟩

p 7→ k̂p

p 7→ ı̂p

p 7→ ȷ̂p

π/2
SU(2)
⟨eı̂ϑ⟩

p 7→ k̂p

p 7→ ı̂p

p 7→ ȷ̂p

It follows that k̂ acts trivially on CP 1
diag and as the antipodal map on CP 1

adiag. Sim-
ilarly, ı̂ acts trivially on CP 1

adiag and as the antipodal map on CP 1
diag. The group

⟨̂ı, ȷ̂, k̂⟩ is the dihedral group and acts as Z2 × Z2 on SU(2)/⟨±1⟩.

In the paper of Schroers & Singer (2021), they consider the complement of CP 1
adiag,

which they denote as ÃH. The Atiyah-Hitchin manifold is the quotient of ÃH
by the group ⟨̂ı, ȷ̂, k̂⟩. In terms of the quaternionic coordinates, the orbits of these
quotient spaces are given as:

CP 1
diag CP 1

adiag

ÃH SU(2)

⟨ek̂ϑ⟩

ÃH/⟨k̂⟩ SU(2)

⟨ek̂ϑ⟩

ÃH/⟨̂ı⟩ SU(2)

⟨ek̂ϑ,ȷ̂⟩

ÃH/⟨̂ı, k̂⟩ SU(2)

⟨ek̂ϑ,ȷ̂⟩

SU(2)
⟨±1⟩
SU(2)

⟨k̂⟩
SU(2)
⟨ı̂⟩

SU(2)

⟨ı̂,ȷ̂,k̂⟩

SU(2)
⟨eı̂ϑ⟩
SU(2)
⟨eı̂ϑ,ȷ̂⟩
SU(2)
⟨eı̂ϑ⟩
SU(2)
⟨eı̂ϑ,ȷ̂⟩

The space ÃH and its quotients retract to CP 1
diag and its quotients. Therefore the

Atiyah-Hitchin manifold is homotopic to SU(2)

⟨ek̂ϑ,ȷ̂⟩
. This is isomorphic to RP 2, because

the Hopf projection implies SU(2)

⟨ek̂ϑ⟩
≃ S2 and ȷ̂ descends to the antipodal map. The

fundamental group of the Atiyah-Hitchin manifold is Z2 and is generated by the
antipodal map. To find its double cover, we need to find a simply connected space
and a free Z2 action such that their quotient is ÃH/⟨̂ı, ȷ̂, k̂⟩. This is satisfied for
ÃH/⟨k̂⟩ and the ı̂ action.

In order to compare the asymptotic Atiyah-Hitchin metric with the Taub-NUT met-
ric, we have to consider the branched cover ÃH/⟨̂ı⟩ instead. On here, a generic fiber
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is of the form SU(2)
⟨ı̂⟩ , which is a circle bundle over S2 of degree ±4. In these co-

ordinates, the circle action can be seen by left multiplication of eı̂ϕ on SU(2)
⟨ı̂⟩ . On

the branched cover, the k̂-action descends to the antipodal map on SU(2)
⟨eı̂ϕ⟩ and anti-

commutes with the fiber, i.e. k̂eı̂θ · p = e−ı̂θk̂ · p.

While in the Taub-NUT case the circle fiber is contractible, the circle fiber in the
Atiyah-Hitchin manifold maps to the generator of RP 2. This can be seen explicitly
in the above picture: A generic fiber inside the Atiyah-Hitchin manifold can be
parametrised by

ei t · (p̄k̂eȷ̂ϕp, p̄k̂e−ȷ̂ϕp) 7→ (p̄e−ı̂ t
4 k̂eȷ̂ϕeı̂

t
4p, p̄e−ı̂ t

4 k̂e−ȷ̂ϕeı̂
t
4p).

When we retract it to the core (ϕ = 0), the right hand side of the expression sim-
plifies to (p̄k̂eı̂

t
2p, p̄k̂eı̂

t
2p). This implies that a rotation along the fiber retracts to

the map (p̄k̂p, p̄k̂p) → (−p̄k̂p,−p̄k̂p) inside CP 1
diag. This is the antipodal map on S2

which is the generator of π1(RP 2).

Remark 2.7. There is a construction for ALF-Dk gravitational instantons which gives
an alternative construction for the Atiyah-Hitchin manifold. According to Hitchin et
al. (1987) all hyperkähler structures (I, J,K) on a 4n-dimensional manifold M can
be uniquely encoded into complex geometric structures on the twistor space Z :=

M×S2. According to Chen & Chen (2019) all ALF-Dk gravitational instantons can
be constructed using this twistor method. This method was conjectured by Ivanov
& Roček (1996) using a generalized Legendre transform developed by Lindström &
Roček (1988). Cherkis & Kapustin (1999) confirmed this conjecture and Cherkis
& Hitchin (2005) computed the metric more explicitly. Therefore, this metric is
called the Cherkis–Hitchin–Ivanov–Kapustin–Lindström–Roček metric. One can ask
whether the other ALF gravitational instantons have a gauge theoretic description.
Cherkis & Kapustin (1999) claim that all ALF gravitational instantons can be seen
as the moduli space of U(2)-monopoles of degree 1 or 2 with k Dirac singularities.

‘Periodic’ gravitational instantons

Let us revisit the construction of the Gibbons-Hawking metric and see whether we
can generalise it: Given a principal circle bundle P over some U ⊆ R3, a connection η
and a positive harmonic function h : U → R, we can construct the Gibbons-Hawking
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metric
gGH = h gU + h−1η2.

In the proof of Proposition 2.3, we have seen that the orthonormal 2-forms

ωGH
i = dxi ∧ η + h dxj ∧ dxk

induce almost complex structures

I∗i dxj =

−1
h
η i = j

− sgn(ijk) dxk i ̸= j

which are integrable if and only if dωi = 0. This only happens when the Bogomolny
equation ∗ dh = d η is satisfied.

To generalise this method for other base spaces, we assume that B is some Rie-
mannian 3-manifold and h : B → R is a positive harmonic function with [∗ dh] ∈
H2(B,Z). As before, we can retrieve a circle bundle P → B with a connection η

satisfying the Bogomolny equation and we can equip P with the Gibbons-Hawking
metric. To construct the Kähler forms however, we need to generalise the forms
dx1, dx2, dx3 ∈ Ω1(R3). We assume B has three nowhere-vanishing 1-forms σi.
The quaternion relations force σi to be orthonormal and the almost complex struc-
tures are integrable if the σi’s are closed. In summary, the Gibbons-Hawking ansatz
can be done over any flat, 3-dimensional, Riemannian manifold that is equipped
with an orthonormal basis of nowhere-vanishing, closed 1-forms.

One example is the metric by Ooguri & Vafa (1996). It can be constructed by the
Gibbons-Hawking ansatz on B = (R2 \ {0}) × S1, where the harmonic function is
the Green’s function. On the universal cover of B, this Green’s function can be
recovered by considering

h(x) = const+
∑
n∈Z

1

2|x− n · z⃗|
.

This infinite sum does not converge and hence one has to renormalise it to make it
well-defined. This has the consequence that h cannot be positive everywhere. That
is, near the singularity h(x) approximates const+ 1

2|x| while near infinity h(x) ≃
− 1

4π
log(x21 + x22), where x1 and x2 are the coordinates on R2 inside R2 ×S1. There-
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fore, the Gibbons-Hawking metric is positive definite near the singularity, but neg-
ative definite near infinity. For more details, see Gross & Wilson (2000).

Although the Ooguri-Vafa metric is not complete, ‘periodic’ versions of the Gibbons-
Hawking ansatz are still useful in understanding the classification of gravitational
instantons. Namely, Sun & Zhang (2021) have classified all gravitational instantons
in terms of their asymptotic geometry. We have already seen that the asymptotic
geometry of ALF gravitational instantons is described in terms of the Gibbons Hawk-
ing ansatz. A ‘negative version’ of the Ooguri-Vafa metric is used to describe the
ALG* metric, which we explain in the following definition:

Definition 2.8. A gravitational instanton (M, g) is of type ALG* if there are
ϵ, c > 0, k ∈ N>0 and a diffeomorphism φ between the asymptotic regions of M
and a Z2 quotient of the Gibbons-Hawking space for h(x) = c+ k · log(x21+x22) on
(R2 \ {0})× S1 such that

∥∇j(φ∗g − gGH)∥gGH = O(r−j−ϵ)

for all j ∈ N and this Z2 quotient is a lift of the action induced by the antipodal
map on R3.

Definition 2.9. A gravitational instanton (M, g) is of type ALG if there is a
k ∈ {2, 3, 4, 6}, an ϵ > 0, and a diffeomorphism φ between the asymptotic regions
of M and a flat orbifold (R2 × T 2)/Zk such that

∥∇j(φ∗g − gflat)∥gflat = O(r−j−ϵ)

for all j ∈ N.

ALG and ALG* gravitational instantons both have quadratic volume growth. How-
ever, for the ALG* case, the circle radius of the fiber (and hence the injectivity
radius) decays with order 1√

log(r)
, while for the ALG case, they have a lower bound.

Also, the curvature decay for an ALG* gravitational instantons is 1
r2 log r

, while for
ALG gravitational instantons it is at least 1

r5/2
.
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According to Chen & Chen (2021b) and Chen & Viaclovsky (2021) any ALG/ALG*
gravitational instanton can be compactified to a rational elliptic surface by adding
a singular elliptic fiber. If this fiber is I∗ν for ν ∈ {1, 2, 3, 4}, the gravitational
instanton is of type ALG*. If the fiber is I∗0 , II, II∗, III, III∗, IV or IV ∗, it is
of type ALG. Moreover, Chen et al. (2021) found a Torelli theorem3 for ALG and
ALG* gravitational instantons.

‘Doubly periodic’ gravitational instantons

For the the Ooguri-Vafa metric we considered the Gibbons-Hawking ansatz on the
quotient of R3 by a rank one lattice. Next we study the case of a rank two lattice.
Just as the Ooguri-Vafa case, the Green’s function on R × T 2 cannot be chosen
positive globally4, and so the Gibbons-Hawking ansatz yields a non-complete hy-
perkähler manifold. However, these examples are still used in the classification of
gravitational instantons:

Definition 2.10. A gravitational instanton (M, g) is of type ALH if there are
ϵ, c > 0 and a diffeomorphism φ between the asymptotic regions of M and the
Gibbons-Hawking space for h(x) = c on R+ × T 2 such that

∥∇j(φ∗g − gGH)∥gGH = O(r−j−ϵ)

for all j ∈ N.

Definition 2.11. A gravitational instanton (M, g) is of type ALH* if there are
ϵ, c > 0, k ∈ N>0 and a diffeomorphism φ between the asymptotic regions of M
and the Gibbons-Hawking space for h(x) = c+ k · |x1| on R+ × T 2 such that

∥∇j(φ∗g − gGH)∥gGH = O(r−j−ϵ)

for all j ∈ N.

ALH gravitational instantons have linear volume growth and their injectivity radius
is bounded below. ALH* gravitational instantons however, have volume growth r4/3

3See Remark 2.5.
4In Lemma 3.3 we will prove this explicitly.
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and their injectivity radius decays with order r−1/3. To see this, one applies the
coordinate transform s = x

3/2
1 on the asymptotic Gibbons-Hawking metric and gets

gGH ≃ d s2 + s2/3 · gT 2 + s−2/3η2.

The curvature decay for ALH* is r−2, while ALH has faster than quadratic curva-
ture decay.

According to Chen & Chen (2021b) and T. C. Collins et al. (2020) any ALH/ALH*
gravitational instanton can be compactified to a rational elliptic surface by adding
a Ik-fiber. If this fiber is regular, i.e. k = 0, the gravitational instanton is of type
ALH. If the elliptic fiber is not regular, the gravitational instanton is of type ALH*.
Sun & Zhang (2021) have shown that k must be between 1 and 9. A Torelli theorem
for ALH gravitational instantons was found by Chen & Chen (2021b). T. Collins et
al. (2022) and Lee & Lin (2022) determined the Torelli theorem for ALH* gravita-
tional instantons.

There are two main examples of ‘(doubly) periodic’ gravitational instantons. The
first example is due to Tian & Yau (1990). They constructed gravitational instan-
tons on the complement of a smooth anti-canonical divisor inside a weak del Pezzo
surface. Just as the Calabi ansatz5 yields a hyperkähler metric on an ample line bun-
dle over a compact Calabi-Yau manifold, Tian and Yau constructed an approximate
solution on the tubular neighbourhood of the divisor. They extended the Kähler
form ω and a holomorphic volume form Ω globally and considered perturbations of
the form ωTY = ω + i∂∂̄ϕ. They found ϕ by solving the Monge-Ampère equation
(ω + i∂∂̄ϕ)2 = 1

2
Ω ∧ Ω̄. The function ϕ has exponential decay and hence the Tian-

Yau metric has the same asymptotic geometry as their approximate solution, which
is ALH*.

Continuing on this work, Hein (2010) constructed gravitational instantons on the
complement of a (singular) elliptic fiber inside a rational elliptic surface. Using
the classification by Kodaira (1963), Hein retrieved an explicit description of the
neighbourhood of the (singular) fiber and he equipped it with a metric that is flat
on the fibers. By extending these structures globally, he made an almost hyperkähler
manifold and he perturbed it into a gravitational instanton by solving the Monge-

5See Calabi (1979). A short exposition in English can be found in Hein et al. (2022).
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Ampère equations. Depending on the type of elliptic fibration, Hein constructed
ALG-, ALG*-, ALH- or ALH*-type gravitational instantons.

2.2 Gluing constructions

In this thesis, we will give a gluing construction for gravitational instantons of type
ALF, ALG, ALG*, ALH and ALH*. The method originates from Donaldson (2006)
and is used often in the literature6. The idea is that we start with a non-complete,
non-compact hyperkähler manifold with explicit models near the boundary. (See
Figure 1.) We refer to this space as the bulk space.

Figure 1: Pictorial representation of our bulk space. In our case, we construct the
bulk space using the Gibbons-Hawking ansatz. The metric around the singularities
must approximate the Taub-NUT space (with mass −4), which is depicted as a green
cone.

In our case we will construct the bulk space using the Gibbons-Hawking ansatz. Just
as the Ooguri-Vafa metric, we will consider R3 modulo a lattice of rank less than
three and we remove a certain number of points where we will perform the gluing.
The antipodal map on R3 induces a Z2 action on our base space and we assert that
our setup is invariant under this involution. We also assert that the fixed points are
part of the set of points we remove. Next, we pick the harmonic function such that,
near the singularities, the Gibbons-Hawking space is modelled on the Taub-NUT
space. More precisely, if a singularity is at a fixed point of the Z2 action, we model
it on the Taub-NUT space with negative mass7 −4 and otherwise we model it on
the standard8 Taub-NUT space. We control the model at infinity by our the choice
of lattice and by the number of singularities we allow to form. Our bulk space will
be the Z2 quotient of this Gibbons-Hawking space. More details will be given in

6See, e.g. Foscolo (2019), Fine et al. (2017), Hein et al. (2022) or Schroers & Singer (2021)
7That is, the Gibbons-Hawking ansatz on R3 \ 0 with h = c+ −4

2|x| .
8That is, the Gibbons-Hawking ansatz on R3 \ 0 with h = c+ 1

2|x| .
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Section 3.1.

In the second step of the gluing construction, we choose for each singularity a com-
plete hyperkähler manifold that asymptotically shares the same topology and metric
as the model space (See Figure 2). We refer to these complete manifolds as bub-
bles. In our case these bubbles will be rescaled versions of Taub-NUT spaces and
Atiyah-Hitchin manifolds. Because the asymptotic geometry of these bubbles co-
incides with the geometry near the singularities, we can identify these regions and
create a complete differentiable manifold. This will be the underlying manifold of
our gravitational instanton. Using a partition of unity we equip this manifold with
a metric that is approximately hyperkähler.

Figure 2: Pictorial representation of the gluing construction. We complete the bulk
space by adding ‘bubbles’ using a connected sum construction. In our case these
bubbles will be rescaled versions of Taub-NUT spaces and Atiyah-Hitchin manifolds.

Instead of constructing one gravitational instanton, we do this gluing procedure for
a 1-parameter family of bulk spaces and bubbles. This extra parameter ϵ, which we
call the collapsing parameter, will measure the quality of our first approximation.
We set up the gluing such that, in the limit, the error of our approximation vanishes.
The explicit choice of our collapsing parameter will be explained in Section 3.3 and
it relates to the size of the circle fiber. Therefore, in the limit where ϵ is zero,
the manifold will not be a gravitational instanton, but will collapse to a flat 3-
dimensional space. To solve this issue, we set ϵ sufficiently small and use a separate
perturbation argument to turn the space into a genuine hyperkähler manifold.
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The elliptic problem

To perturb the approximate solution, we phrase the hyperkähler conditions as an
elliptic PDE which we will solve using the inverse function theorem. Before, we de-
fined a hyperkähler manifold as a Riemannian manifold (M, g) with three compatible
Kähler structures that satisfy the quaternion relations. Although this definition is
beautiful in its simplicity, it is hard to solve. Therefore, we will introduce an alterna-
tive formalism in terms of Kähler forms which will be used to set up the deformation
problem. The perturbation argument explained here is a slightly modified version
of that used in Schroers & Singer (2021).

Given a hyperkähler manifold (M, g, I1, I2, I3), consider its Kähler forms ωi. Instead
of treating all Kähler forms equally, we fix a complex structure I1 and consider the
holomorphic volume form ωC = ω2 +

√
−1ω3. Because Kähler forms are elements of

Ω1,1(M) and holomorphic volume forms are elements of Ω2,0(M), ω1 ∧ ωC = 0. By
varying the complex structures Ii, we find

ωi ∧ ωj = 0 for all i ̸= j.

This implies that all three Kähler forms are orthogonal with respect to g. At the
same time, the hyperkähler condition requires the three complex structures to be
Kähler with respect the same Riemannian metric g. This implies 1

2
ωi ∧ ωi = Volg

for all i ∈ {1, 2, 3} and hence ωi is a pointwise orthonormal frame on Λ+T ∗M . In
general, the triple we get from the gluing construction is not orthonormal. However,
for our analysis it will be sufficient if this triple is linearly independent.

Definition 2.12. Let M be a four dimensional manifold and let ω = (ω1, ω2, ω3)

be a triple of 2-forms.

1. We say ω is a definite triple if there is a volume form µ and a positive-
definite matrix P ∈ C∞(M)⊗ Sym2(R3) such that

1

2
ωi ∧ ωj = Pij · µ.

2. We say ω is an orthonormal triple if it is a definite triple where P is the
identity matrix and

µ =
1

6

∑
k

ωk ∧ ωk.
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According to Donaldson (2006) there is a unique conformal class of metrics for any
definite triple such that ωi spans the space of self-dual forms. This metric g can
be chosen uniquely if we also fix the volume form. The choice of volume form we
made in Definition 2.12 is convenient, because it makes the Kähler forms from a
hyperkähler metric automatically orthonormal.

Definition 2.13. Let M be a 4-dimensional manifold and let ω be a triple of
2-forms. We say that ω is a hyperkähler triple if

1. it is a triple of closed 2-forms, and

2. it is an orthonormal triple.

Given a hyperkähler manifold, the induced triple of Kähler forms must be a hy-
perkähler triple. According to Donaldson (2006), the converse is also true, i.e. a
hyperkähler triple induces a unique hyperkähler metric. Hence, the use of hyperkäh-
ler triples gives us an alternative definition for hyperkähler manifolds which is more
algebraic. From now on we study hyperkähler triples instead of hyperkähler metrics.

We return to the gluing construction and we assume we found a definite triple of
closed 2-forms ω. Assume there exists a triple of 1-forms a such that

ω̃ = ω + d a

is a hyperkähler triple. We will solve this for a. Because ω̃ is hyperkähler, the
expression ω̃i ∧ ω̃j − 1

3
δij
∑

k ω̃k ∧ ω̃k is a traceless, symmetric 3 × 3 matrix with
values in Ω4(M). Therefore, we consider the projection map

Tf : Mat3×3(R)⊗ Ω4(M) → Sym2
0(R3)⊗ Ω4(M)

P ⊗ µ 7→
(
1

2
P +

1

2
P ∗ − 1

3
Tr(P ) Id

)
⊗ µ,

(1)

and our goal is to find a ∈ Ω1(M)⊗ R3 such that

Tf((ω + d a)2) = Tf(ω ∧ ω) + 2Tf(d a ∧ ω) + Tf(d a ∧ d a) = 0. (2)

This does not have a unique solution, because Ω1(M)⊗R3 has rank 12, but Sym2
0(R3)⊗
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Ω4(M) is only a rank 5 vector bundle. In order to solve this issue, we first remove
the gauge freedom a 7→ a + d f : According to Donaldson (2006), there is a unique
metric g such that ωi span Ω+(M) and Volg = 1

3

∑
k ωk ∧ ωk. We fix the gauge

by assuming d∗ a = 0. In order to fix all remaining 9 degrees of freedom, we also
assume that a satisfies

d a ∧ ω = d+ a ∧ ω = −1

2
Tf (ω ∧ ω + d a ∧ d a) . (3)

Next, recall that ωi span Ω+(M) and the wedge product is a non-degenerate pairing
on Ω+. Therefore, the map

Λ: Ω+(M)⊗ R3 →Mat3×3(R)⊗ Ω4(M)

σ 7→σ ∧ ω
(4)

is a bijection and Equation 3 is equivalent to

d+ a = −1

2
Λ−1Tf(ω ∧ ω + d a ∧ d a). (5)

Combining Equation 3 with the gauge fix d∗ a = 0, we conclude a must satisfy

(d∗+d+) a = −1

2
Λ−1Tf(ω ∧ ω + d a ∧ d a).

Our choice of gauge is convenient, because (d∗+d+) is a Dirac operator:

Lemma 2.14. The operator

D̸ : Ω0(M)⊕ Ω1(M)⊕ Ω∓(M) → Ω0(M)⊕ Ω1(M)⊕ Ω±(M)

f 7→ d f f ∈ Ω0(M)

a 7→ (d∗+d±)a a ∈ Ω1(M)

σ 7→ 2 d∗ σ σ ∈ Ω∓(M)

is a Dirac operator such that D̸ 2 equals the Hodge Laplacian.

Proof. Consider the canonical Clifford structure with the Dirac operator d+d∗ on
the space of forms (See Example 3.19 in Roe (1998)). The volume form and the
Clifford action induce a Z2 grading on Λ• T ∗M and decompose it as S+ ⊕S−. Each
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of these subbundles can be identified as

S± = Ω0(M)⊕ Ω1(M)⊕ Ω±(M).

Under this identification d+d∗ becomes D̸ and hence D̸ is a Dirac operator. D̸ 2

can be calculated explicitly, which will show D̸ 2 is the Hodge Laplacian.

We assume that a lies in the image of D̸ : (Ω0(M)⊕Ω+(M))⊗R3 → Ω1(M)⊗R3. This
has the advantage that the linearised version of Equation 5 is the Hodge Laplacian
and that a can be described by a section of a trivial bundle. Moreover, if we write
a =D̸ (u+ ζ) with u ∈ Ω0(M)⊗R3 and ζ ∈ Ω+(M)⊗R3, then u and ζ must satisfy

∆ζ =− 1

2
Λ−1Tf(ω ∧ ω)− 2Λ−1Tf(d d∗ ζ ∧ d d∗ ζ), (6)

∆u =0.

We fix the gauge d∗ a = 0 by setting u = 0. We will solve Equation 6 using the
version of the inverse function theorem given in Lemma 6.15 in Foscolo (2019):

Theorem 2.15 (Inverse function theorem). Let F (x) = F (0)+L(x)+N(x) be a
smooth function between Banach spaces such that there exist r, q, C > 0 satisfying

1. L is an invertible linear operator with ∥L−1∥ < C,

2. ∥N(x)−N(y)∥ ≤ q · ∥x+ y∥ · ∥x− y∥ for all x, y ∈ Br(0), and

3. ∥F (0)∥ < min
{

1
4qC2 ,

r
2C

}
.

Then, there exists a unique x in the domain of F such that F (x) = 0 and ∥x∥ ≤
2C∥F (0)∥.

Heuristically, condition 2 of Theorem 2.15 requires the non-linear part of F to be
‘quadratic’. (Compare this condition to the identity (a + b)(a − b) = a2 − b2.) A
quick glance at Equation 6 suggests that this is indeed true. Similarly, condition 3
gives us a requirement for how good our approximate solution must be. We will use
the collapsing parameter to satisfy this condition.

Lastly we need to find suitable Banach spaces such that the Hodge Laplacian on
Ω+(M) ⊗ R3 is invertible with bounded inverse. This is not obvious and proving
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this will be the main bulk of this thesis. However a small calculation will show it is
sufficient to study the Laplacian acting on functions instead. To see this, trivialise
ζ ∈ Ω+(M)⊗R3 into ζi = uij ωj and use Riemann normal coordinates {xk}. By the
Weitzenböck formula (Roe (1998) Equation 3.8),

∆(uijωj) =D̸
2(uijωj) = −∇k∇k(uijωj)+ ̸R (uijωj),

where ̸R is the Clifford contraction of the Riemann curvature tensor. Using the
trivialisation of ζ and the fact that the Clifford contraction is C∞-linear,

∆(uijωj) = (∆uij) · ωj − 2∇kuij · ∇k ωj + uij ·
[
−∇k∇k ωj+ ̸R ωj

]
= (∆uij) ωj − 2∇∇uij

ωj + uij· D̸ 2(ωj).

The term D̸ 2(ωj) will vanish, because ωj is closed and self-dual. When ω is a
hyperkähler triple, ∇ω = 0 and hence ∆(uijωj) = (∆uij)ωj. We expect that, when
ω is sufficient close to being hyperkähler, the Hodge Laplacian on Ω+(M) and the
Laplacian on functions define equivalent operators.
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3 Almost hyperkähler manifolds

In 1997, Ashoke Sen proposed a gluing construction for Dk-ALF instantons as an
application in string theory. Namely, in his paper, Sen (1997) considered n D6-
branes with an orientifold plane in type IIA string theory (See Figure 3). In M-
theory a D6-brane corresponds to the Cartesian product of R1,6 and a Taub-NUT
space. Similarly an orientifold plane is related to the Cartesian product of R1,6

and the Atiyah-Hitchin manifold. Due to this product structure, Sen assumed that
his 11-dimensional manifold decomposed into R1,6 and a 4-dimensional hyperkähler
manifold M . He claims that M can be constructed as follows: He started with the

D6 D6Orientifold

Figure 3: Graphical depiction of two D6-branes and one orientifold in type IIA string
theory.

Gibbons-Hawking Ansatz on a punctured R3 with the harmonic function

h(x) = 1 +
−4

2|x|
+
∑
i

1

2|x+ pi|
+

1

2|x− pi|
,

where pi ̸= 0 are the positions of the D6-branes. Sen only considered the region of
the Gibbons-Hawking space where h is strictly positive, because near the origin the
metric degenerates. The Gibbons-Hawking metric near the origin approximates(

const− 2

|x|
+O(|x|2)

)
gR3 +

1

const− 2
|x| +O(|x|2)

η2,

which approximates the Taub-NUT metric with mass −4. Similarly, this Gibbons-
Hawking metric approximates the standard Taub-NUT metric near the singularities
pi.
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Secondly, he considered the Z2 action induced by the antipodal map on R3. He lifted
this involution such that near the origin it coincides with the projection map to the
Atiyah-Hitchin manifold from its branched double cover. The metric is invariant
under this involution and hence Sen quotiented the circle bundle by this Z2 action.
He claimed that the region near pi approximates the Taub-NUT space. Similarly,
he claimed that near the origin the metric approximates the Atiyah-Hitchin metric
and he claimed that this can be made complete by gluing in these spaces. Although
Sen never did this gluing explicitly, Schroers & Singer (2021) formalised his argu-
ment in their quest of finding geometric models of matter M. F. Atiyah et al. (2012).

In this chapter we extend the work of Sen and explain the construction of our approx-
imate hyperkähler manifold. In Section 3.1 we construct the bulk space using the
Gibbons-Hawking ansatz. We explain our choices for the base space and harmonic
function and by studying the Green’s functions we will find explicit estimates. After
we find the circle bundle and involution, we do a parameter count for our choice
of connection in Section 3.2. Next, we return to the construction of the bulk space
and introduce the collapsing parameter in Section 3.3 and finish the construction in
Section 3.4. Before we end the chapter, we study the topology and compare it to
known classifications in Section 3.5.

3.1 The bulk space

Similarly to what Sen did, we will construct the bulk space using the Gibbons-
Hawking ansatz. Instead of considering R3, we consider R3 modulo a non-maximal
lattice L, i.e. a lattice whose rank is less than three. Before we apply the Gibbons-
Hawking ansatz, we assign a certain number of points where singularities are allowed
to form. After we apply the Gibbons-Hawking ansatz, we lift the antipodal map of
R3 to the circle bundle and consider its Z2 quotient as our bulk space. These spaces
are the main topic of this thesis and will be used throughout without reference.
Hence, we will define them formally:

Definition 3.1. Fix once and for all a non-maximal lattice L on R3.

• We call the quotient B := R3/L, endowed with the flat metric, the base
space.

• We refer to the map τ : B → B that is induced from the map x 7→ −x on
R3 as the antipodal map.
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• We denote the fixed point set of τ by {qj} and we call qj a fixed point or a
fixed point singularity. Unless specified otherwise, we call the action induced
by τ on B, the Z2 action on B.

Because L is non-maximal, the basepace B can only be diffeomorphic to R3, R2×S1

or R × T 2. We will see later that each case yields different kinds of gravitational
instantons and will require different kinds of analysis. When we distinguish these
cases we will write B = R3, B = R2 × S1 or B = R× T 2.

When the lattice L is trivial, the only fixed point is the origin. However, in the other
cases we have two or four fixed points respectively. Just as in Sen (1997), we pick a
certain number of points which we remove from B. It turns out we need to impose
some restrictions on the number of singularities, which are given in the following
definition. In Lemma 3.4 we see the necessity of these requirements.

Definition 3.2. Fix once and for all a finite set of points {pi} ∈ (B \ {qj})/Z2.
We call an element pi a non-fixed point or a non-fixed singularity. When B ̸= R3,
the number of non-fixed points must satisfy:

R2 × S1 R× T 2

Maximum number of non-fixed points 4 8

Now let ϵ > 0 be small and denote

B′ = B \ ∪i{±pi} \ ∪jB4ϵ(qj). (7)

We call B′ the punctured base space.

Our goal is to apply the Gibbons-Hawking ansatz over B′ that approximates the
Taub-NUT metric near the pi’s and the branched double cover of the Atiyah-Hitchin
metric near the fixed points qj. For this we first need to construct a suitable harmonic
function with the correct asymptotics near the singularities. For the Taub-NUT
metric this requires that the harmonic function must diverge as 1

2r
at ±pi. For

the Atiyah-Hitchin metric this requires that the harmonic function must diverge as
−2
r

at qj. Because the Gibbons-Hawking ansatz requires harmonic function to be
positive, we had to remove a ball around the points qj. This explains the definition
of the punctured base space B′. The exact choice of radius for B4ϵ(qj) in B′ will be
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determined later when we study the gluing in more detail. For now it is sufficient
that the radius is small enough such that the balls B4ϵ(qj) are pairwise disjoint and
B′ is connected.

Harmonic function

Recall that the Green’s function on R3 is given by G(x, x′) = 1
4π|x−x′| . This implies

that near pi, the harmonic function h must satisfy ∆h = 2πδ(x−pi). Similarly, near
the fixed point singularities, the harmonic function h must satisfy ∆h = −8πδ(x−
qj). By linearity this can be done globally, and hence we need to solve

∆h = −8π
∑
j

δ(x− qj) + 2π
∑
i

δ(x− pi) + δ(x+ pi)

on B. To solve this, we first recall the Green’s function for R3/L.

Lemma 3.3. Let p ∈ B. There exists a smooth function G on B \{p} that solves

∆G = 2πδ(x− p) on B,

is invariant under the involution centred at p, and has the following asymptotic
expansion near infinity:

G(x, y, z) =


1

2
√

x2+y2+z2
+O((x2 + y2 + z2)−1) B = R3

− 1
4πVol(S1)

log(x2 + y2) +O(e−2π
√

x2+y2/Vol(S1)) B = R2 × S1

− π
Vol(T 2)

|x|+O(e−|x|) B = R× T 2.

Proof. On R3, the functionG can be found explicitly and is given byG(x, y, z) = 1
2|x| .

For the rest of this proof we work out the case B = R×T 2. The case B = R2×S1 is
similar and an alternative proof can be found in Gross & Wilson (2000), Lemma 3.1.

We equip R × T 2 with coordinates (x, y, z) such that the metric is given by g =

dx2 + gT 2 . Without loss of generality we assume that p is at (0, 0, 0). Let N ∈ N
and consider the function

GN(x, y, z) =
π

Vol(T 2)

−|x|+
∑

0<|(m,n)|<N

1√
m2 + n2

e−
√
m2+n2|x|ei(my+nz)

 .
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The function GN + π
Vol(T 2)

|x| is an L2 function on R× T 2, because the summand is
exponentially decaying. By construction GN = GN , and so GN is real valued. We
claim that GN + π

Vol(T 2)
|x| is a Cauchy sequence in L2. Indeed, for any M > N ,

∥∥GM −GN
∥∥
L2(R×T 2)

=
π2

Vol(T 2)

∑
N≤|(m,n)|<M

1

(m2 + n2)3/2
= O(N−1).

Define the limit of GN as G. We show that G solves ∆G = 2πδ as a distribution.
For this, let f ∈ C∞

c (R × T 2), δ > 0 and D = (R \ Bδ(0)) × T 2. We consider
⟨∆f,G⟩L2(D) for some sufficiently small δ. By integration by parts,

⟨∆f,G⟩L2(D) = lim
N→∞

⟨∆f,GN⟩L2(D)

= lim
N→∞

⟨f,∆GN⟩L2(D) +

∫
Sδ(0)×T 2

(
GN

∂f

∂x
− f

∂GN

∂x

)
Vol2T .

The functionGN is defined as a sum of harmonic functions, and therefore ⟨f,∆GN⟩L2(D) =

0. Next we consider the Fourier decompositions of f andG, i.e. f =
∑

k,l∈Z f̂kl(x)e
i(ky+lz)

and G =
∑

m,n∈Z Ĝmne
i(my+nz). This simplifies our calculation of ⟨∆f,G⟩L2(D), as

⟨∆f,G⟩L2(D) = lim
N→∞

∑
k,l∈Z

0<|(m,n)|<N

∫
Sδ(0)×T 2

(
Ĝmn

∂f̂kl
∂x

− f̂kl
∂Ĝmn

∂x
ei((k−m)y+(l−n)z) Vol2T

)

= lim
N→∞

Vol(T 2)
∑

|(m,n)|<N

[
Ĝmn

∂f̂mn

∂x
− f̂mn

∂Ĝmn

∂x

]δ
−δ

.

We evaluate the right hand side explicitly, which is

⟨∆f,G⟩L2(D) =− δπ

(
∂f̂00
∂x

(δ)− ∂f̂00
∂x

(−δ)

)
+ π

(
f̂00(δ) + f̂00(−δ)

)
+ π

∑
(m,n) ̸=(0,0)

1√
m2 + n2

e−
√
m2+n2|δ|

(
∂f̂mn

∂x
(δ)− ∂f̂mn

∂x
(−δ)

)

+ π
∑

(m,n) ̸=(0,0)

e−
√
m2+n2|δ|

(
+f̂mn(δ) + f̂mn(−δ)

)
.

40



3.1. The bulk space W.A. (Andries) Salm

When we take the limit δ → 0, we conclude

⟨∆f,G⟩L2(R×T 2) =2πf̂00(0) + 2π
∑

(m,n) ̸=(0,0)

f̂mn(0) = 2πf(0, 0, 0).

Finally, we investigate whether G is smooth outside p. For any open U away from
p, the function G satisfies ∆G = 0 as a distribution. According to Folland (1995)
Proposition 6.33, G is an element of W k,2(U) for all k ∈ N. By the Sobolev inequal-
ity, G must be smooth.

Taking linear combinations of G we are now able to construct the harmonic function
that is required for the Gibbons-Hawking ansatz:

Lemma 3.4. Write #{pi} for the number of pairs pi in (B−{qi})/Z2. Let G be
the Green’s function defined in Lemma 3.3 and consider

h = −4
∑
j

G(x− qj) +
∑
i

(G(x− pi) +G(x+ pi)) .

Let r be the Euclidean distance from the origin on R3, R2 or R when B = R3,
B = R2 × S1 or B = R× T 2 respectively.

(a) Near infinity,

h =


2·#{pi}−4

2r
+O(r−3) if B = R3

β · (8− 2 ·#{pi}) · log(r) +O(r−2) if B = R2 × S1

β · (16− 2#{pi}) · r +O(e−r) if B = R× T 2

for some β > 0, and β only depends on the lattice L.

(b) Near the fixed points qj, h(x) = αj − 2
|x−qj | +O(|x− qj|2) for some αj > 0.

Near the non-fixed points ±pi, h(x) = αi +
1

2|x∓pi| + O(|x ∓ pi|2) for some
αi > 0.

(c) There exists an δ > 0 such that ϵ−1 + h is a harmonic function on B′ =

B \ ∪i{±pi} \ ∪jB4ϵ(qj) which is greater than 1
2

for all 0 < ϵ < δ.

(d) The only maps that satisfy

1. ∆h̃ = −8π
∑

j δ(x− qj) + 2π
∑

i δ(x− pi) + δ(x+ pi),
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2. h̃ is bounded below on B′,

are the maps h̃ = h+ c for some constant c ∈ R.

Proof. Part (a): These estimates follow from the expansion given in Lemma 3.3.
When B = R3 or B = R2 × S1, the leading error term in O(r−2) or O(r−1) respec-
tively, disappears due to the Z2 invariance.

Part (b): Recall that on any small ball U centred at pi in B, the function h satisfies
∆h = 2πδ(x − pi). The function 1

2|x−pi| also satisfies this equation. This implies
that h− 1

2|x−pi| is a harmonic function on U . Expanding this difference in terms of
spherical harmonics yields

h(x)− 1

2|x− pi|
= αj +O(|x− pi|2)

for some αi ∈ R. Similarly, we can expand h near the fixed point qj. In this case
the linear term will vanish due to the Z2 invariance of h.

Part (c): We consider ϵ−1 + h. We already know that it is harmonic on B′, and
hence we only need to find when it is greater than 1

2
. By the maximum principle

any harmonic function attains its minimum on the boundary, where we have explicit
estimates. Near the point pi, the function h diverges to +∞ with rate 1

r
. Hence, it

is positive near this boundary. On the boundary near the fixed point qj we have the
estimate

ϵ−1 + h = ϵ−1 + αj −
1

2
ϵ−1 +O(ϵ2)

This diverges to +∞ as ϵ tends to 0. Lastly, we consider the boundary at infinity.
At this boundary, the function h can only attain 0 or ±∞, and using the conditions
specified in Definition 3.2 the case h|∞ = −∞ is discarded. Hence h is bounded
below and ϵ−1 + h can be chosen strictly positive, greater than 1

2
.

Part (d): We only show uniqueness. Suppose that h̃ satisfies

1. ∆h̃ = −8π
∑

j δ(x− qj) + 2π
∑

i δ(x− pi) + δ(x+ pi), and
2. h̃ is bounded below on B′.

Then, u := h̃ − h is a harmonic function on B which can be lifted to a harmonic
function on R3. We claim that u = O(r). Indeed, due to part (a) the lower bound
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of u diverges at most linearly to −∞ and hence we only need to study the upper
bound. For this, fix r > 0 sufficiently large and consider the map u+r (x) := u(x)+1−
infy∈B2r(0) u(y). This is strictly positive on B2r(0) and hence the Harnack inequality
implies for all x ∈ Br(0),

u+r (x) ≤ 6 u+r (0).

For sufficiently large r, this can be rewritten as

u(x) ≤ C + 5 sup
y∈B2r(0)∩B′

h(y)

for some constant C > 0. This implies u is a harmonic function of order O(r). The
only harmonic functions that satisfy this are the affine functions, but the only affine
function that makes h̃ = h+ u bounded below is the constant function. Therefore,
u must be constant.

Remark 3.5. Although in Lemma 3.4(a) we used the supremum norm, estimates
for the derivatives can be obtained using elliptic regularity estimates. For example,
when B = R3, the map h(x)−α− 2|pi|−4

2r
is a harmonic function on the asymptotic re-

gion. According to the weighted Schauder estimate from Bartnik (1986) Proposition
1.6, for each k ∈ N there exists a C > 0 such that∥∥∥∥rk+2 ∇k

(
h(x)− α− 2|pi| − 4

2r

)∥∥∥∥
C0

≤ C

∥∥∥∥r2(h(x)− α− 2|pi| − 4

2r

)∥∥∥∥
C0

<∞.

This implies that ∇k
(
h(x)− α− 2|pi|−4

2r

)
= O(r−2−k) for all k.

Circle bundle and involution

Using the existence of the harmonic function h, we can study circle bundles P over
B′. According to Chern (1977) all principal S1-bundles are classified by the first
Chern class. That is, for each element in σ ∈ H2(B′,Z), there is a unique principal
S1-bundle P → B′ and a (non-unique) connection9 η such that σ = −1

2π
[d η]. The

Gibbons-Hawking ansatz requires ∗ dh = d η and hence it is sufficient to show ∗ dh
is represented by an element in the integral cohomology class. We already know h

is harmonic and hence ∗ dh is closed and induces an element in H2
dR(B

′).

9The factor −1/2π is due to the identification of u(1) = iR with R.
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Lemma 3.6. For all Σ ∈ H2(B
′), we have that −1

2π

∫
Σ
∗ dh ∈ Z and ∗ dh is

represented by an element in H2(B′,Z).

Proof. First we need to calculate the second cohomology class of B′. Notice that B
can be reconstructed from B′ by adding a certain number of balls that are centred
around the singularities, and hence the topology of B′ can be determined using the
Mayer-Vietoris sequence. The relevant part of this sequence is

0 → H2(B,Z) → H2(B′,Z) → Z2·#{pi}+#{qj} → 0.

Using the explicit topology of B ∈ {R3,R2 × S1,R× T 2}, we conclude

H2(B
′) =


Z2·#{pi}+#{qj} if B = R3

Z2·#{pi}+#{qj} if B = R2 × S1

Z2·#{pi}+#{qj}+1 if B = R× T 2.

Most elements of H2(B
′) are given by the 2-spheres centred around the singularities

±pi and qj. When B = R×T 2, there is one extra cycle which is the 2-torus at infinity.
Using Lemma 3.4(b) we have explicit estimates for ∗ dh near the singularities. Using
this and the fact that

∫
S2(±pi)

∗ dh must be radially independent, we conclude that

−1

2π

∫
S2(±pi)

∗ dh = 1,
−1

2π

∫
S2(qj)

∗ dh = −4.

Finally, we need to calculate
∫
T 2 ∗ dh over the 2-torus for the case B = R× T 2. We

use a similar idea as in Charbonneau & Hurtubise (2011) Proposition 3.5: Pick some
x > 0 sufficiently large and consider the integral −1

2π

∫
[−x,x]×T 2 d ∗ dh. This integral

must vanish due to the harmonicity of h. The boundary of [−x, x] × T 2 ⊂ B′

decomposes into
{±x} × T 2

⊔
⊔iS

2(±pi)
⊔

⊔jS
2(qj),

and hence Stoke’s theorem implies

0 =

∫
{x}×T 2

∗ dh+

∫
{−x}×T 2

∗ dh−
∑
i

∫
S2(±pi)

∗ dh−
∑
j

∫
S2
δ (qj)

∗ dh.
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When we impose the Z2 invariance of h,

2 · −1

2π

∫
{x}×T 2

∗ dh = 4|qi| − 2|pi| = 16− 2|pi| ∈ 2Z.

This concludes the first part of this lemma. In order to conclude that [∗ dh] is
induced by an element in H2(B′,Z), we notice that H2(B

′) has no torsion. Therefore
the map H2(B,Z) → H2

dR(B
′) is injective and its image contains all [σ] ∈ H2

dR(B
′)

such that −1
2π

∫
Σ
σ ∈ Z.

Definition 3.7. Let h be the harmonic function defined in Lemma 3.4. The
principal circle bundle P that satisfies c1(P ) = [∗ dh] will be referred to as the
principal bundle.

Similarly to what Sen did, we want to lift the antipodal map τ to a free Z2 action τ̃
on P . In order to glue in Atiyah-Hitchin at the fixed points qj, we need to require
that τ̃(eiϕ · p) = e−iϕ · τ̃(p) for all p ∈ P and ϕ ∈ R. We claim that such a lift exists.

Lemma 3.8. There exists a lift τ̃ of τ on P such that for all p ∈ P and ϕ ∈ R,

τ̃(eiϕ · p) = e−iϕ · τ̃(p),

and this lift is unique up to gauge transformation.

Proof. Using the explicit bijection between principal S1-bundles and H2(B′,Z) in
the proof of Chern (1977), one can show τ̃ exists if and only if

τ̃ ∗ c1(P ) = −c1(P ).

This is satisfied, because the harmonic function h is invariant under τ .

In order to show uniqueness, assume that there are two lifts τ̃1 and τ̃2. For any p ∈ P ,
the involutions τ̃1 and τ̃2 map p to the same fiber and hence there is a ϕp ∈ R such
that τ̃1(p) = eiϕp · τ̃2(p). Hence, these lifts only differ by gauge transformation.
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Definition 3.9. Unless specified otherwise, we refer to τ̃ from Lemma 3.8 as the
Z2 action on P .

Let η be a connection on the principal bundle P . Because c1(P ) = [∗ dh], we can pick
η such that it satisfies the Bogomolny equation ∗ dh = d η. With this information
we are able to apply the Gibbons-Hawking Ansatz and hgB+h−1η2 is a hyperkähler
metric on P . We also have a free Z2 action on our principal bundle. If we make η
antisymmetric under τ̃ , then the Gibbons-Hawking metric will be invariant under
this involution and the Gibbons-Hawking metric descends to an hyperkähler metric
on P/Z2, which we pick as our bulk space.

3.2 The parameter space of η

Before we continue with the gluing construction, let us first determine the freedom
we have in choosing η. Let η and η̃ be two antisymmetric connections on P satisfying
the same Bogomolny equation ∗ dh = d η = d η̃. Their difference must be a pull-back
of a closed 1-form on the base space. If this 1-form is exact, the connections differ
by a gauge transformation, in which case the induced Gibbons-Hawking metrics
hgB + h−1η2 are isometric. Therefore, we only consider η̃ − η up to exact form and
view it as an element of H1(B′). By the Mayer-Vietoris sequence, H1(B′) = H1(B),
and so

[η̃ − η] =


0 if B = R3

a [d z] if B = R2 × S1

a [d y] + b [d z] if B = R× T 2

where a, b ∈ R. If a and b are integers, then the gauge transformations ei az and
ei(ay+bz) are well-defined and identify η with η̃. If a and b are not integers, then η

and η̃ are not gauge-equivalent connections, as their holonomies at infinity differ.
We conclude,

Proposition 3.10. When B = R3, the connection η is uniquely determined up
to gauge transformation. When B ̸= R3, the connection is uniquely determined
up to an element in H1(B,R)/H1(B,Z).
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An alternative way of studying the degrees of freedom in η is to consider the con-
nection it induces at infinity: According to Lemma 3.4, there is some constant c ∈ R
such that

d η = ∗ dh =


− c

2
· VolS2 +O(r−4) if B = R3

c · VolT 2 +O(r−3) if B = R2 × S1

c · VolT 2 +O(e−r) if B = R× T 2.

According to Lemma 3.6, the closed 2-forms − c
2
·VolS2 and c·VolT 2 are representatives

of elements in H2(S2,Z) and H2(T 2,Z) respectively and hence there is a connection
η∞ on an circle bundle over S2 or T 2 such that

d η = d η∞ +


O(r−4) if B = R3

O(r−3) if B = R2 × S1

O(e−r) if B = R× T 2.

Because d η and d η∞ represent the same element in H2, there is a 1-form η̃∞ on the
asymptotic region of B, such that d η = d η∞ + d η̃∞. By the following version of
the Poincaré lemma, we can pick η̃∞ with an explicit decay rate:

Lemma 3.11. Let Σ be a compact n-dimensional manifold and consider U =

R × Σ. Let τ be a closed k-form such that at some r0 ∈ R, τ |{r0}×Σ = 0. Then
the radial integrand

η̃ =

∫
s∈(r0,r)

(ι∂rτ) d s

satisfies d η̃ = τ .

Proof. Calculate d η in local coordinates and apply the fundamental theorem of
calculus.

Using remark 3.5 with the explicit integration in Lemma 3.11, we conclude that for
all k ∈ N,

∇kη̃∞ =


r−3−k if B = R3

r−2−k if B = R2 × S1

e−r if B = R× T 2

with respect to the Euclidean metric on B.
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By construction, the difference between η and η∞ + η̃∞ is closed. The space of flat
U(1)-connections on a compact 2-manifold Σ is parametrised byH1(Σ,R)/H1(Σ,Z),
and hence we can pick η∞ such that η − η∞ − η̃∞ is exact. In summary,

Lemma 3.12. Let r be the Euclidean distance from the origin on R3, R2 or R
when B = R3, B = R2 × S1 or B = R × T 2 respectively. Far away from the
singularities, there exists an r-independent connection η∞ on a S1-bundle over a
compact set and a 1-form η̃∞ on the asymptotic region of the base space such that

η = η∞ + η̃∞

up to gauge transformation. With respect to gB,

∇kη̃∞ =


O(r−3−k) if B = R3

O(r−2−k) if B = R2 × S1

O(e−r) if B = R× T 2

for all k ≥ 0.

When B = R3, the connections η and η∞ are uniquely determined up to gauge
transformation. Similarly, when B = R × T 2, both η and η∞ can both be chosen
from a 2-parameter family. However, in the case B = R2 × S1 we have two degrees
of freedom for the asymptotic connection, while according to Proposition 3.10 we
only have one for η. In order to explain this apparent discrepancy, we describe the
circle bundle over the asymptotic region of R2 × S1 with explicit coordinates. In
these coordinates we give the asymptotic connection explicitly and solve the appar-
ent discrepancy by considering the holonomy.

Consider R3 with the coordinates {ϕ, z, t} and quotient it with the free Z3 action

(n,m, p) · (ϕ, z, t) = (ϕ+ 2π n, z + 2π m, t+ 2π p+ 2πc m ϕ), (8)

where c is a fixed integer. Under the projection (ϕ, z, t) 7→ [ϕ, z] ∈ T 2, the space
R3/Z3 becomes an S1-bundle over T 2. For any a, b ∈ R the 1-form

η∞ = d t− c z dϕ+ a dϕ+ b d z

is invariant under the Z3 action and descends to a connection on R3/Z3 satisfying
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d η∞ = cVolT 2 . The values a, b ∈ R/Z are the variables by which the space of
connections on T 2 is parametrised. One can calculate the holonomy along S1

ϕ×{z0}
and {ϕ0} × S1

z ⊆ T 2, which is e2πi·(c z0−a) and e−2πi·(c ϕ0+b) respectively.

We focus now on the case when at infinity the connection η∞ is identified with the
connection η that was constructed by the Gibbons-Hawking ansatz. By calculating
the holonomy of η, we can retrieve the values of a and b. As explained in Proposition
3.10, any value for b ∈ R/Z can be attained. We claim however, that a must be
zero. Indeed, consider the loop γ along the circle in the punctured plane B′|z=0

and consider the holonomy along this circle when the radius r0 is very large. The
principal bundle over the punctured plane B′|z=0 is trivial and hence there is an
η0 ∈ Ω1(B′|z=0) such that η trivialises as d t+ η0. The holonomy along γ is given by

Hol(γ) = −
∫
γ

η0 ∈ R/2πZ.

Let Ann be the region in B′|z=0 that is bounded by γ. That is, Ann is a punctured
plane in B with boundaries γ, γq0 and γ±pi′

where γq0 and γ±pi′
are arbitrary small

loops around the singularities that lie in the plane z = 0. By Stoke’s theorem and
the Bogomolny equation,

Hol(γ) = −
∫
γ

η0 = −
∫
Ann

∗ dh−
∫
γq0

η0 −
∑
i′

∫
γ±pi′

η0.

Because the harmonic function h is invariant under the antipodal map, ∗ dh is anti-
symmetric and hence

∫
A
∗ dh vanishes. To consider the contribution

∫
γq0
η0, we

consider the upper half sphere S+(q0) with boundary γq0 . According to lemma 3.4,
h ≃ aj − 2

|x−q0| +O(|x− q0|2), which implies∫
γq0

η0 =

∫
S+(q0)

∗ dh =

∫
S+(q0)

2Vol(S2) +O(r) = 4π.

A similar calculation can be done for
∫
γ±pi′

η0. Because the non-fixed points come
in pairs, their contribution will again be a multiple of 2π, and hence

−2π · a ∈ 2πZ.

Because Hol(γ) ∈ R/2πZ, we conclude a = 0. A similar study is done for the case
B = R× T 2 by Hein et al. (2022), and hence in general we have:
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Proposition 3.13. When B = R2 × S1 or B = R × T 2, there exists a unique
connection η∞ on an S1-bundle over T 2 such that asymptotically

η = η∞ +

O(r−2) if B = R2 × S1

O(e−r) if B = R× T 2

up to a gauge transformation. Moreover, in the coordinates {r, ϕ, z} or {r, y, z}
on R2 × S1 or R× T 2 respectively, the bundle P |r=∞ can be trivialized such that

η∞ =

d t− c z dϕ+ b d z if B = R2 × S1

d t− c z d y + a d y + b d z if B = R× T 2

for some a, b ∈ [0, 2π) and c ∈ Z.

When P |r=∞ is non-trivial, one can use rotations and translations to set the con-
stants a and b in Proposition 3.13 to arbitrary values. For example, in the case
B = R2 × S1 with coordinates {r, ϕ, z}, fix ϕ0, z0 ∈ R and consider the path
γ(s) = (r, ϕ + ϕ0 s, z + z0 s) on B. In the coordinates used in Equation 8, the
horizontal lift of this path at infinity can be chosen such that

γ(1) = (ϕ+ ϕ0, z + z0, t+ c ϕ0 · z).

This horizontal lift induces a diffeomorphism on P which is isometric on B. More-
over,

γ∗η∞ − η∞ = cϕ0 d z − cz0 dϕ.

Hein et al. (2022) also made this observation and argued that ALH manifolds will
have a and b as parameters for their moduli space, but ALH* does not. We expect
a similar behaviour in our ALG*/ALG case. Namely, the action of γ can be viewed
as a rotation on the R2 plane in B = R2 × S1. Under these rotations one can map
η∞ to the fixed connection d t − cz dϕ. Moreover, this transformation acts on the
Kähler forms by a hyperkähler rotation. By rotating the base of R3/L in the opposite
direction simultaneously, one can keep the Kähler forms fixed while modifying η∞.
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3.3 The collapsing parameter

We return to the construction of the bulk space. The second step of the gluing pro-
cedure is to pick a collapsing parameter. From the Gibbons-Hawking construction
there are two obvious parameters to choose:

• The constant in the harmonic function h.

• The global scale of the metric.

Indeed, according to Lemma 3.4, the function h is uniquely determined up to a
constant, and for any C > 0, the function C + h satisfies the Bogomolny equation
for the same connection. Hence C is a free parameter which can be varied in our
construction. Similarly, given an hyperkähler metric g, the metric C · g is also
hyperkähler. Although these parameters look independent, they are actually related
by a coordinate transformation. Indeed, trivialise the metric on the base space
gB = dx21 + dx22 + dx23 and consider the Gibbons-Hawking metric

g = (C + h) dx2i +
1

C + h
η2.

Next consider the transformation x̃i = Cxi and denote g̃B = d x̃21 + d x̃22 + d x̃23. In
these new coordinates the metric reads

g = C−2(C + h)g̃B +
1

C + h
η2.

Comparing the hodge dual for gB and g̃B, one can show ∗g̃B d(1+C−1h) = d η. This
implies that the metric

C · g = (1 + C−1h)g̃B +
1

1 + C−1h
η2

also arises from the Gibbons-Hawking ansatz. Moreover, the Green’s function on
B transforms as GgB(x, x0) = C · Gg̃B(x̃, C · x0) and so the rescaling of the metric
can be viewed as a combination of a rescaling of the lattice L, a translation of the
singularities and a change of constant.

Because changing the harmonic function and rescaling induce equivalent metrics, we
pick our collapsing parameter as a combination of them. We choose our metric such
that for any point on B′, the length of the fiber converges to 2πϵ as our collapsing
parameter ϵ tends to zero:
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Definition 3.14. Consider P , τ̃ from definitions 3.7 and 3.9 and h from Lemma
3.4. Let η be a antisymmetric connection on P such that ∗ dh = d η. For any
ϵ > 0 we define the harmonic function

hϵ = 1 + ϵh.

From now on, the metric that is induced by the Gibbons-Hawking ansatz with the
harmonic function ϵ−1+h and η, and is rescaled by a factor of ϵ will be called the
Gibbons-Hawking metric and denoted as gGH . Explicitly, it is given by

gGH = hϵgB +
ϵ2

hϵ
η2

and its Kähler forms are

ωGH
1 =ϵ dx1 ∧ η + hϵ dx2 ∧ dx3

ωGH
2 =ϵ dx2 ∧ η + hϵ dx3 ∧ dx1

ωGH
3 =ϵ dx3 ∧ η + hϵ dx1 ∧ dx2.

The hyperkähler space (P/Z2, g
GH , ωGH

i ) will be called the bulk space.

3.4 Gauge fixing and the gluing of Kähler forms

In the third step of the gluing construction we make the bulk space complete and
equip it with an almost hyperkähler metric. To do this, we have to identify the
asymptotic regions of the Atiyah-Hitchin manifolds and the Taub-NUT spaces to a
neighbourhood of the singularities. Due to our choice of harmonic function h, this
can be done explicitly. For example, on the tubular neighbourhood of P near a fixed
point singularity qj, the Gibbons-Hawking ansatz yields a circle bundle over R×S2

of degree −4. As explained before, the asymptotic region of the branched double
cover of the Atiyah-Hitchin manifold has the same topology. Moreover, on this
neighbourhood, both the Atiyah-Hitchin metric and the metric on the bulk space
approximate the Taub-NUT metric with mass −4 and their involutions co-inside.

Instead of interpolating the metrics we will interpolate the Kähler forms. In order to
get the correct error estimates, we have to modify the diffeomorphism between the
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bulk space P/Z2 and the asymptotic regions of the Atiyah-Hitchin manifolds and
Taub-NUT spaces using a suitable gauge transformation. We explain our choice of
gauge transformation and we give the interpolated forms explicitly.

Because the Taub-NUT metric with negative mass is a suitable model for the Atiyah-
Hitchin manifold, we will use it to measure the errors on the gluing region. Similarly,
we will use the standard Taub-NUT metric as the model metric for the non-fixed
singularities. These metrics will be used later in the thesis and hence we will fix
them once and for all:

Definition 3.15. Let pi be a non-fixed singularity and let ri be the distance to pi
on B. Let αi > 0 be such that, near pi, h(x) = αi +

1
2|x−pi| +O(|x− pi|). For the

model metric near pi define

hpi :=αi +
2

ri
, ρpi := log ri,

hpiϵ :=1 + ϵ hpi , Ωpi :=r
−1
i (hpiϵ )

− 1
2 .

Let Upi ⊆ B′ be a punctured neighbourhood of pi homotopic to S2 and let ηpi be
an ri-invariant connection of P |Upi satisfying the Bogomolny equation

∗ dhpi = d ηpi .

Define gpi to be the Gibbons-Hawking metric induced by hpi and ηpi, i.e.

gpi := hpiϵ gUpi +
ϵ2

hpiϵ
(ηpi)2.

We call the hyperkähler manifold (P |Upi , gpi) the model space near pi. Its Kähler
forms are

ωpi
1 =ϵ dx1 ∧ ηpi + hpiϵ dx2 ∧ dx3

ωpi
2 =ϵ dx2 ∧ ηpi + hpiϵ dx3 ∧ dx1

ωpi
3 =ϵ dx3 ∧ ηpi + hpiϵ dx1 ∧ dx2.

Also define the conformally rescaled model metric

gpicf := Ω2
pi
gpi = d ρ2pi + gS2 +

ϵ2

(hpiϵ )2
(ηpi)2.
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Definition 3.16. Let qj be a fixed point singularity and let rj be the distance to
qj on B. Let αj > 0 be such that, near qj, h(x) = αj − 2

|x−qj | +O(|x− qj|2). For
the model metric near qj define

hqj :=αj −
2

rj
, ρqj := log rj,

hqjϵ :=1 + ϵ hqj , Ωqj :=r
−1
j (hqjϵ )

− 1
2 .

Let U qj ⊆ B′ be a punctured neighbourhood of qj homotopic to S2 and let ηqj be
an rj-invariant connection of P |Uqj satisfying the Bogomolny equation

∗ dhqj = d ηqj .

Define gqj to be the Gibbons-Hawking metric induced by hqj and ηqj , i.e.

gqj := hqjϵ gUqj +
ϵ2

h
qj
ϵ
(ηqj)2.

We call the hyperkähler manifold (P |Uqj , gqj) the model space near qj. Its Kähler
forms are

ω
qj
1 =ϵ dx1 ∧ ηqj + hqjϵ dx2 ∧ dx3

ω
qj
2 =ϵ dx2 ∧ ηqj + hqjϵ dx3 ∧ dx1

ω
qj
3 =ϵ dx3 ∧ ηqj + hqjϵ dx1 ∧ dx2.

Also define the conformally rescaled model metric

g
qj
cf := Ω2

qj
gqj = d ρ2qj + gS2 +

ϵ2

(h
qj
ϵ )2

(ηqj)2.

Remark 3.17. The choice and use of the conformal rescaling will be explained in
Chapter 4. Namely, it turns out that this conformal rescaling will be a useful tool
in understanding the analytical properties of the Laplacian. Moreover, one can view
the Ck norms with respect to gpicf and gqjcf as a generalisation of the norms in Bartnik
(1986). For example, when u : U qj → R is a function for which rl∇l

gB
u is bounded

for all l ≤ k, then its induced function on the principal bundle P |Uqj has a bounded
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Ck norm with respect to gqjcf . Indeed, the covariant derivatives w.r.t. gqjcf are given
by

du =
∂u

∂xi
dxi

∇
g
qj
cf
du =

∂2u

∂xi∂xj
dxi ⊗ dxj +

∂u

∂xi
∇

g
qj
cf
dxi

∇2

g
qj
cf

du =
∂3u

∂xi∂xj∂xk
dxi ⊗ dxj ⊗ dxk + 2

∂2u

∂xi∂xj
∇

g
qj
cf
dxi ⊗ ∂xj +

∂u

∂xi
∇2

g
qj
cf

dxi

. . . etc . . .

By assumption, r ∂u
∂xi

, r2 ∂2u
∂xi∂xj

, . . ., rk ∂ku
∂xi1

...∂xik
are bounded and hence ∥u∥Ck

g
qj
cf

is fi-

nite if r−1∇l

g
qj
cf

dxi is bounded for all l ≤ k. By the Koszul formula one can estimate

these terms explicitly10, which proves our claim.

A second reason to use gpicf and g
qj
cf is that higher derivatives will have the same

growth/decay rate as the functions itself. For example, according to Remark 3.5,
∇k(h − hqj) = O(r2−k

j ) with respect to the Euclidean metric on the base space.
Converting this to the conformal metric, one concludes

∇k
cf (h− hqj) ∼ rk∇k

gB
(h− hqj) = O(r2j ).

Therefore, higher order estimates follow automatically from the C0 estimate and we
can omit them in our calculations.

Let us come back to the study of the Kähler forms. According to Definition 3.14,
the difference between the Kähler forms of gGH and the model metrics are

ωGH
i − ωpi =ϵ dxi ∧ (η − ηpi) + (hϵ − hpiϵ ) dxj ∧ dxk,

ωGH
i − ωqj =ϵ dxi ∧ (η − ηqj) + (hϵ − hqjϵ ) dxj ∧ dxk.

Therefore, we need to estimate the difference between the connection η and the
connection on the model spaces. For this we use the same argument as in Lemma
3.12. For example, to estimate the closed 2-form d(η − ηqj) = ∗B d(h − hqj), we
use Remark 3.5 to conclude d(η − ηqj) and its derivatives are of order r3j w.r.t. gqjcf .
Therefore, we can integrate d(η − ηqj) from r0 = 0 using Lemma 3.11. This yields

10See the calculations in Lemma 4.8.
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a 1-form η̃qj such that
d η = d ηqj + d η̃qj .

Because H1(S2) = 0, the form η − ηqj − η̃qj is exact and hence we have:

Lemma 3.18. On a small annulus around each fixed point singularity qj, there
exists a gauge transformation which identifies η with ηqj + η̃qj , where η̃qj and all
its derivatives are of order r3j with respect to gqjcf .

Similarly, on a small annulus around each non-fixed singularity pi, there exists
a gauge transformation which identifies η with ηpi + η̃pi, where η̃pi and all its
derivatives are of order r2i with respect to gpicf .

With this we estimate the difference between the Kähler forms of gGH and gqj .
Using the estimates from Lemmas 3.4 and Lemma 3.18 their difference is given by
ϵ dxi ∧O(r3j ) +O(ϵr2j ) dxj ∧ dxk. Because r−1 dxi and its derivatives are bounded
in gqjcf ,

∥∇k(ωGH − ωqj)∥
g
qj
cf
= O(ϵr4j )

for all k ≥ 0. Similarly, one can estimate ∥∇k(ωGH − ωpi)∥gpicf = O(ϵr3i ) near a non-
fixed singularity pi. This enables us to apply the radial integration from Lemma
3.11 again to find:

Lemma 3.19. On a small annulus around the non-fixed singularity pi, there exists
a smooth triple of 1-forms, which we denote by σpi,GH , such that

ωGH = ωpi + dσpi,GH .

The 1-forms σpi,GH and all its derivatives are of order O(ϵr3j ) with respect to gpicf .

On a small annulus around the fixed point singularity qj, there exists a smooth
triple of 1-forms, which we denote by σqj ,GH , such that

ωGH = ωqj + dσqj ,GH .

The 1-forms σqj ,GH and all its derivatives are of order O(ϵr4j ) with respect to gqjcf .
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Next we compare the Atiyah-Hitchin metric to the Taub-NUT metric with negative
mass −4 explicitly. According to M. Atiyah & Hitchin (1988), the Atiyah-Hitchin
metric has a radial parameter rAH and for large values of rAH the metric on the
branched double cover is

gAH =

(
1− 2

rAH

)
(d r2AH + r2AHgS2) +

(
1− 2

rAH

)−1

(ηqj)2 +O(e−rAH ).

Similar estimates are true for the Kähler forms. By identifying rj := ϵ
1+ϵαj

rAH ,
where αj is defined in Lemma 3.4, one can show

ϵ2

1 + ϵαj

gAH(rAH) =g
qj(rj) +O(e−

1+ϵαj
ϵ

rj),

ϵ2

1 + ϵαj

ωAH(rAH) =ω
qj(rj) +O(e−

1+ϵαj
ϵ

rj).

Here the error is estimated using gqj . Converting this into g
qj
cf and applying the

radial integration from Lemma 3.11 again, we conclude

Lemma 3.20. On the asymptotic region of the Atiyah-Hitchin manifold, there
exists a triple of 1-forms σqj ,AH such that

ϵ2

1 + ϵαj

ωAH = ωqj + dσqj ,AH

and σqj ,AH and all its derivatives are O(r2j e
− 1+ϵα

ϵ
rj) with respect to gqjcf .

In a similar manner we can compare the Kähler forms for the model metric near
pi with a rescaled version of a fixed Taub-NUT space. In this case, there is no
exponentially decaying error term and we get the result:

Lemma 3.21. By identifying ri := ϵ
1+ϵαi

rTN , where αi is defined in Lemma 3.4,

gpi =
ϵ2

1 + ϵαi

gTN , and ωpi =
ϵ2

1 + ϵαi

ωTN ,

where gTN is the fixed Taub-NUT space

gTN :=

(
1 +

1

2rTN

)
(d r2TN + r2TNgS2) +

1

1 + 1
2rTN

(ηpi)2.

57



W.A. (Andries) Salm 3. Almost hyperkähler manifolds

With these ingredients we can finally construct a complete manifold and equip it
with a definite triple that is almost hyperkähler. Near the fixed point singularities
we complete the bulk space using Atiyah-Hitchin manifolds. Near the non-fixed
points, we glue in Taub-NUT spaces11. With this setup, we define the complete
4-dimensional manifold underlying our gravitational instantons.

Definition 3.22. Let n be the number of non-fixed points pi and m be the number
of fixed point singularities qj, defined in Definition 3.2 resp. 3.1. Let P/Z2 be
the bulk space. Identify the asymptotic region of the Atiyah-Hitchin manifold and
the neighbourhoods of qj on P/Z2 with the Z2 quotient of the model space defined
in Definition 3.16. Similarly, identify the asymptotic region of the Taub-NUT
space and the neighbourhoods of pi on P/Z2 with the the model space defined
in Definition 3.15. Consider the connected sum of P/Z2 with m copies of the
Atiyah-Hitchin manifold and n copies of the Taub-NUT space. We call this space
the global space and we denote it as MB,n.

In order to equip MB,n with a definite triple, let ϵ ∈ (0, 1), R0, R1 ∈ (0,∞) be small.
Assume that the gluing in the connected sum construction happens on the region⋃

iBR1(pi)\BR0(pi) and
⋃

j BR1(qj)\BR0(qj). For each point pi and qj, pick χϵ(x) be
a family of smooth step functions on B such that χϵ(x) = 0 when ∥x− pi∥gB , ∥x−
qj∥gB ≤ R0 and χϵ(x) = 1 when ∥x− pi∥gB , ∥x− qj∥gB ≥ R1. We pick the following
triple on the connected sum:

ω =



ϵ2

1+ϵαi
ωTN if ∥x− pi∥gB ≤ R0

ϵ2

1+ϵαj
ωAH if ∥x− qj∥gB ≤ R0

ωpi + d
(
χϵσ

pi,GH
)

if R0 ≤ ∥x− pi∥gB ≤ R1

ωqj + d
[
(1− χϵ)σ

qj ,AH + χϵσ
qj ,GH

]
if R0 ≤ ∥x− qj∥gB ≤ R1

ωGH
i otherwise.

We need to find χϵ, R0 and R1 such that ωi is hyperkähler outside r ∈ [R0, R1] and
behaves well enough inside. We will explain where our choices come from. Assume
that R0 = C0ϵ

κ and R1 = C1ϵ
κ for some C0, C1 > 0, κ ∈ R. We need to balance the

following factors:
11Alternatively, one can complete the region near the non-fixed points in a similar way as the

Taub-NUT space is completed by adding some extra points. To unify the gluing procedure for the
Atiyah-Hitchin manifold and the Taub-NUT space we prefer to use the first method.
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• For the approximations of σpi,GH and σqj ,GH we need the radial distance to
the singularity to be small. This is satisfied when κ > 0.

• At the same time we need that hϵ > 0 and so rj cannot be too small. This
is satisfied when C0 = 4 and κ < 1, because Lemma 3.4 implies hϵ > 0 if
4ϵκ > 4ϵ.

• For the approximation of σqj ,AH we need rAH to be large. Combining rj =

O(ϵκ) and rAH =
1+ϵαj

ϵ
rj, it follows rAH = O(ϵκ−1). This is large when κ < 1.

• Finally we need that R0 < R1. This happens when C0 < C1.

From Lemma 3.19 and 3.20, we have decay estimates for σpi,GH , σqj ,GH and σqj ,AH .
It is sufficient if we assume σpi,GH , σqj ,GH = O(ϵr3j ) and σqj ,AH = O(ϵ3r−1

j ). When
we pick

R0 = 4ϵ
2
5 and R1 = 5ϵ

2
5

all the above requirements are satisfied. By estimating χϵ, one notices that dχϵ =

O(1) and may conclude.

Theorem 3.23. There exists an ϵ1 > 0 such that for all 0 < ϵ < ϵ1:

1. ωi is a closed 2-form in MB,n.

2. Outside the gluing region (i.e. ri ∈ [4ϵ
2
5 , 5ϵ

2
5 ] or rj ∈ [4ϵ

2
5 , 5ϵ

2
5 ]), ωi is an

hyperkähler triple.

3. Inside the gluing region near the fixed point qj, ωi−ω
qj
i and all its derivatives

are of order O(ϵ3r−1
j ) + O(ϵr3j ) w.r.t. gqjcf . In particular, inside this gluing

region ωi is a definite triple of closed 2-forms such that

1

2
ωi ∧ ωj =

(
Id+O(ϵ7/5)

)
ij
⊗ Volg

qj
.

4. Inside the gluing region near the non-fixed point pi, ωi − ωpi
i and all its

derivatives are of order O(ϵr3j ) w.r.t. gpicf . In particular, inside this gluing
region ωi is a definite triple of closed 2-forms such that

1

2
ωi ∧ ωj =

(
Id+O(ϵ7/5)

)
ij
⊗ Volg

pi
.
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3.5 Global properties of MB,n

Before we finish this chapter we study some global properties of our constructed
almost hyperkähler manifold and compare it to known results in literature. First we
will calculate the homology groups and give an explicit description of the intersec-
tion form. Secondly we study possible compactifications and compare our results
with the work of Chen & Chen (2019), Chen & Viaclovsky (2021) and Hein et al.
(2021). Finally we compare the number of parameters in our construction to the
dimension of the respective moduli spaces.

Figure 4: The basespace of the multi-Taub-NUT space retracts to a line that connects
all singularities.

In order to study the topology of MB,n, we first consider the topology of the multi-
Taub-NUT space and we revisit the work by Sen (1997). Let p1, . . . , pn be an
ordered list of points on R3 and consider the multi-Taub-NUT space which has pi
as its singularities. As depicted in Figure 4, one can consider paths γi that connect
pi with pi+1. By shrinking the base space, we retract the Taub-NUT space to a
fiber bundle over this set of lines. Over each open line γi, the circle bundle must be
trivial and by the Gibbons-Hawking metric, the circle radius of the fiber over each
point is 2πϵ√

hϵ
. From the construction of the harmonic function hϵ, this circle radius

must be finite and is zero only at the endpoints of the line segments. Hence the
bundle over the line segment γi is homotopic to a sphere and, as shown in Figure 5,
these spheres only touch at the points pi. Therefore, the multi-Taub-NUT space is
homotopic to a chain of wedge sums of n− 1 spheres.

By perturbing the paths γi one can calculate the intersection matrix for the multi-
Taub-NUT space. Because the endpoints of line segments are fixed, intersection
can only happen at these points. According to Sen (1997), each sphere has self-
intersection -2 and only intersects its neighbours with a factor +1. Hence the inter-
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Figure 5: The multi-Taub-NUT space retracts to a wedge sum of 2-spheres.

section matrix is of the form 
−2 1

1 −2 1

1 −2 1

1 −2


which is the negative Cartan matrix of a An−1-type Dynkin diagram.

In order to calculate the topology of MB,n, we will use this retraction argument in
combination with the Mayer-Vietoris sequence repeatedly. Namely, we will use the
topology of MR3,n to calculate the topology of MR2×S1,n, which will be used to calcu-
late the topology of MR×T 2,n. Using the explicit pictures like Figure 5, we calculate
their intersection matrices.

Proposition 3.24. When B = R3 and there are no non-fixed points pi, the space
MB,n retracts to RP 2 and its homology is

Hk(MR3,0) =


Z if k = 0

Z2 if k = 1

0 otherwise.

When there are non-fixed points pi, the homology of MR3,n is given by

Hk(MR3,n) =


Z if k = 0

Zn if k = 2

0 otherwise.
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Proof. First consider the case n ̸= 0.

Y

X

Z2 · Y

p1
p2

−p2 −p1

(0, 0)

Figure 6: The underlying manifold MR3,n can be seen as the union of the Atiyah-
Hichin manifold and the Multi-Taub-NUT space.

Let δ > 0 be sufficiently small and rotate R3 such that the plate X := (−δ, δ)×R2 ⊂
B does not contain any of the non-fixed singularities ±pi. As shown in Figure 6,
the base space B′ without the plate X has two connected components, which can
be identified using the antipodal map. Denote one of these connected components
as Y . The antipodal map sends X onto itself and therefore the bulk space P/Z2 can
be written as

P/Z2 = (P |X)/Z2 ∪ P |Y .

From the gluing construction we identify MR3,n with P̃ |X/Z2 ∪ P̃ |Y , where P̃ |X/Z2

is the connected sum of P |X/Z2 with the Atiyah-Hitchin manifold and P̃ |Y is the
connected sum of P |Y with n copies of Taub-NUT. The space P |X/Z2 retracts to
its boundary at the origin, which, after the connected sum construction, will be
identified with the asymptotic region of the Atiyah-Hitchin manifold. Because the
Atiyah-Hitchin manifold retracts to RP 2, P̃ |X/Z2, must also retract to RP 2.

The space P̃ |Y can be studied in a similar manner as in Sen (1997), and hence it is
homotopic to the wedge sum of n − 1 copies of S2. In order to apply the Mayer-
Vietoris sequence we need to calculate P̃ |X/Z2 ∩ P̃ |Y . Because the two connected
components {±δ} × R2 of the boundary of X are identified by the antipodal map,
P̃ |X/Z2 ∩ P̃ |Y is diffeomorphic to a circle bundle over R2. Therefore, we get the
following long exact sequence:
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. . . H̃k(MR3,n)oo H̃k(RP 2)⊕ H̃k(
∨n−1

i=1 S
2)oo H̃k(S

1)oo . . .oo

0 H̃0(MR3,n)oo 0⊕ 0oo 0oo

H1(MR3,n)

oo

Z2 ⊕ 0oo Z∂oo

H2(MR3,n)

oo

0⊕ Zn−1oo 0oo 0oo

We directly conclude H0(MR3,n) = Z and Hk(MR3,n) = 0 for k > 2. In order to
calculate the remaining homology groups, we have to consider the map ∂ : H1(S

2) →
H1(RP 2) in the long exact sequence. This map is the embedding of a fiber over a
point into the P̃ |X/Z2. As explained in Section 2.1, this fiber is homotopic to
the generator of H1 inside the Atiyah-Hitchin manifold and so ∂(1) = [1]. Using
H1(MR3,n) = Z2/ im(∂) and H2(MR3,n) = Zn−1 ⊕ ker(∂) we conclude

Hk(MR3,n) =


Z if k = 0

Zn if k = 2

0 otherwise.

When there are no non-fixed points, i.e. n=0, the manifoldMR3,n retracts to P̃ |X/Z2,
which is homotopic to RP 2.

Figure 7: Similarly to how Figure 5 depicts the 2-cycles inside the multi-Taub-NUT
space, this figure depicts the 2-cycles with self-intersection -2 inside P |X ∪ P̃ |Y ∪ Z2 ·
P̃ |Y . The grey planes depict the boundary between these regions. The dark-blue
spheres form a basis of H2(P̃ |Y ) with A4 as intersection matrix. The green sphere is
the extra 2-cycle in ker ∂ ⊆ H2(MR3,5). The light-blue spheres are the Z2 images of
the other spheres. The dark blue and green spheres form a basis of H2(MR3,5) such
that its intersection matrix is the negative Cartan matrix of D5.

Sen (1997) argued that the intersection matrix for MR3,n is the negative Cartan ma-
trix for a Dn Dynkin diagram. His argument is as follows: As shown in Proposition
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3.24, H2(MR3,n) is the direct sum of second homology group of the multi-Taub-NUT
space with n singularities with an extra copy of Z. As explained at the beginning
of this section, the multi-Taub-NUT space has a basis of 2-cycles such that the in-
tersection matrix is given by the negative Cartan matrix of An−1. Again we can
visualise this by retracting Y to a set of line segments between the points p1, . . . , pn
and considering the fiber bundle over these lines. In Figure 7, the fiber bundle over
these line segments is depicted by dark blue spheres.

According to Proposition 3.24, there is one extra 2-cycle. From the Mayer-Vietoris
sequence this 2-cycle must intersect the boundary between P̃ |X/Z2 and P̃ |Y by two
generators of H1(S

1). According to Sen (1997), we can find this extra 2-cycle by
picking a path between p2 and Z2 ·p1 and considering the fiber bundle over this path.
Using the same argument as before, this must be a 2-sphere with self intersection
−2. In figure 7 this extra cycle is shown as the green sphere, and indeed this
sphere intersects the boundary exactly twice. Because this extra 2-cycle intersects
the sphere between p1 and p2 twice, but with opposite orientation, the intersection
matrix is of the form 

−2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2 1 1

1 −2

1 −2


This is the negative Cartan matrix of type Dn. This argument only works for n ≥ 4.
In Table 1 we calculate the intersection matrices for n ≤ 4.

For the cases 2 ≤ n ≤ 4, the intersection matrix for MR3,n is also given by the neg-
ative Cartan matrix of a Dn-Dynkin diagram. The case MR3,1 does not fit into this
framework. To find its self-intersection one notices that the generator for MR3,1 is
equivalent to the sum of the generators in MR3,2 in Table 1. Because the intersection
matrix for MR3,2 is diagonal, the self-intersections add up.
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n 2-cycles Intersection matrix Diagram Type

4


−2 1
1 −2 1 1

1 −2
1 −2

 D4

3

−2 1 1
1 −2 0
1 0 −2

 A3

2

(
−2 0
0 −2

)
A1 + A1

1
(
−4
)

N/A N/A.

Table 1: Intersection matrices for MR3,n with n ≤ 4.

Proposition 3.25. When B = R2 × S1 and there are no non-fixed points pi, the
homology groups of MR2×S1,0 are

Hk(MR2×S1,0) =


Z if k ∈ {0, 2}

Z2 if k = 1

0 otherwise.

When there are non-fixed points pi, the homology of MR2×S1,n is given by

Hk(MR2×S1,n) =


Z if k = 0

Zn+1 if k = 2

0 otherwise,

and the intersection matrix is given by the negative Cartan matrix of the extended
Dynkin diagram of type Dn.

Proof. Let δ > 0 be sufficiently small. Consider X := (R2 × (−δ, δ))∩B′ ⊆ R2 ×S1

and perturb X such that it doesn’t contain any of the non-fixed singularities ±pi.
Denote Y as the complement of X inside B′. By construction both are Z2 invariant
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under the antipodal map, and hence the bulk space P/Z2 can be written as

P/Z2 = P |X/Z2 ∪ P |Y /Z2.

From the gluing construction we identify MR2×S1,n = P̃ |X/Z2 ∪ P̃ |Y /Z2, where
P̃ |X/Z2 and P̃ |Y /Z2 are completions of P |X/Z2 and P |Y /Z2 respectively using
Atiyah-Hitchin manifolds and Taub-NUT spaces. Using a similar construction as in
Proposition 3.24, we identify the topology of P̃ |X/Z2 and P̃ |Y /Z2 with the topology
of MR3,0 and MR3,n respectively. The intersection P̃ |X/Z2 ∩ P̃ |Y /Z2 must be an
S1-bundle over a plane, which retracts to a circle. With this information we fill in
the Mayer-Vietoris sequence:

. . . H̃k(MR2×S1,n)oo H̃k(MR3,0)⊕ H̃k(MR3,n)oo H̃k(S
1)oo . . .oo

0 H̃0(MR2×S1,n)oo 0⊕ 0oo 0oo

H1(MR2×S1,n)

oo

Z2 ⊕ δnZ2
oo Z∂oo

H2(MR2×S1,n)

oo

0⊕ Znoo 0oo 0oo

Here, we used δnZ2 as a shorthand for H1(MR3,n) =

Z2 if n = 0

0 if n ̸= 0.
The Mayer-

Vietoris sequence implies

Hk(MR2×S1,n) =



Z if k = 0

Z2⊕δnZ2

im ∂
if k = 1

Zn ⊕ ker ∂ if k = 2

0 otherwise.

In order to giveHk(MR2×S1,n) explicitly, we need to study the map ∂ : Z → Z2⊕δnZ2.
Just as in Proposition 3.24, ∂(1) embeds a circle fiber over a point into P̃ |X/Z2 and
P̃ |Y /Z2. As discussed before, this circle fiber maps to the generator of the RP 2 in
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the Atiyah-Hitchin manifold. We conclude that

∂(1) =

([1], [1]) if n = 0

[1] if n ̸= 0,

and therefore

Hk(MR2×S1,n) =



Z if k = 0

δnZ2 if k = 1

Zn+1 if k = 2

0 otherwise.

Using Sen’s method, one can construct the generators of H2(MR2×S1,n) and calculate
their intersection matrix. In table 2 these generators are explicitly given and their
intersection matrix correspond to the negative Cartan matrix related to the extended
Dynkin diagram of type Dn.

Remark 3.26. There is an alternative way to visualise the extra 2-cycle inside
MR2×S1,n. Indeed, consider the loop {±x}×S1 ⊆ R2 ×S1 for some |x| ≫ 1. In the
Z2 quotient this maps to a single loop and hence the fiber bundle over this loop will
be a 2-torus inside MR2×S1,n. This loop intersects the boundary X/Z2∩Y/Z2 exactly
twice and hence the torus intersects P̃ |X/Z2 ∩ P̃ |Y /Z2 at two copies of S1. One can
check that these two copies of S1 have the same orientation and hence they lie in the
kernel of ∂ : H1(S

1) → H1(MR3,0)⊕H1(MR3,n). Because H2(MR2×S1,n) = Zn⊕ker ∂,
this torus can be viewed as one of the generators of H2. By varying |x| one sees that
this torus has no self-intersection and in this new basis the intersection matrix is(

Dn 0

0 0

)
.
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n 2-cycles Intersection matrix Diagram Type

4


−2 1
1 −2 1 1 1

1 −2
1 −2
1 −2

 D̃4

3


−2 1 1 0
1 −2 0 1
1 0 −2 1
0 1 1 −2

 Ã3

2

−2 0 0
0 −2 2
0 2 −2

 A1 + Ã1

1

(
−4 4
4 −4

)
N/A N/A.

Table 2: Intersection matrices for MR2×S1,n. These generators are constructed by
restricting the fiber bundle over paths between the non-fixed points pi inside the uni-
versal cover of B = R2×S1. The dark blue spheres are the generators of H2(MRn,n)
given in Table 1. The green spheres is the extra 2-cycle that are induced by the kernel
of ∂ : H1(S

1) → H1(MR3,0) ⊕ H1(MR3,n). The light blue spheres are the images of
the dark blue and green spheres under the antipodal map and the action of Z. The
gray planes depict the boundary of the fundamental domain of R2 × S1 inside its
universal cover.
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Proposition 3.27. When B = R× T 2 and there are no non-fixed points pi, the
homology groups of MR×T 2,0 are

Hk(MR×T 2,0) =



Z if k = 0

Z2 if k = 1

Z3 if k = 2

0 otherwise.

When there are non-fixed points pi, the homology of MR×T 2,n is given by

Hk(MR×T 2,n) =


Z if k = 0

Zn+3 if k = 2

0 otherwise.

Proof. Let δ > 0 be sufficiently small. ConsiderX := (R×S1×(−δ, δ))∩B′ ⊆ R×T 2

and perturb X such that it doesn’t contain any of the non-fixed singularities ±pi.
Denote Y as the complement of X inside B′. By construction both are Z2 invariant
under the antipodal map and hence the bulk space P/Z2 can be written as

P/Z2 = P |X/Z2 ∪ P |Y /Z2.

From the gluing construction we identify MR×T 2,n = P̃ |X/Z2 ∪ P̃ |Y /Z2, where
P̃ |X/Z2 and P̃ |Y /Z2 are completions of P |X/Z2 and P |Y /Z2 respectively using
Atiyah-Hitchin manifolds and Taub-NUT spaces. Using a similar construction as in
Proposition 3.25, we identify the topology of P̃ |X/Z2 and P̃ |Y /Z2 with the topol-
ogy of MR2×S1,0 and MR2×S1,n respectively. The intersection P̃ |X/Z2∩ P̃ |Y /Z2 must
be an S1-bundle over R × S1 × {δ}, which is homotopic to T 2. This gives us the
following long exact sequence:
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. . . H̃k(MR×T 2,n)oo H̃k(MR2×S1,0)⊕ H̃k(MR2×S1,n)oo H̃k(T
2)oo . . .oo

0 H̃0(MR×T 2,n)oo 0⊕ 0oo 0oo

H1(MR×T 2,n)

oo

Z2 ⊕ δnZ2
oo Z2∂1oo

H2(MR×T 2,n)

oo

Z⊕ Zn+1oo Z∂2oo

H3(MR×T 2,n)

oo

0⊕ 0oo 0oo 0oo

We conclude

Hk(MR×T 2,n) =



Z if k = 0

Z2⊕δnZ2

im ∂1
if k = 1

ker ∂1 ⊕ Z⊕Zn+1

im ∂2
if k = 2

ker ∂2 if k = 3

0 otherwise.

In order to give Hk(MR×T 2,n) explicitly, we need to study the map ∂i : Hi(T
2) →

Hi(MR2×S1,0)⊕Hi(MR2×S1,n). The generator of H2(T
2) can be viewed as one of the

tori at infinity, and hence by Remark 3.26, the map ∂2 is injective. Therefore,

Hk(MR×T 2,n) =



Z if k = 0

Z2⊕δnZ2

im ∂1
if k = 1

ker ∂1 ⊕ Zn+1 if k = 2

0 otherwise.

Secondly, recall that T 2 was the S1-bundle over R×S1×{δ} and so H1(T
2) is gener-

ated by a fiber over a point and the non-trivial circle in the base space. Similarly, as
in Propositions 3.24 and Propositions 3.25, the map ∂1 maps the fiber over a point
to the generator of Z2 inside the Atiyah-Hitchin manifold. The circle in the base
space maps to a contractible loop inside the Atiyah-Hitchin manifold and hence

∂1([1]fiber) =

([1], [1]) if n = 0

[1] if n ̸= 0,
and ∂1([1]base) = 0.
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This concludes

Hk(MR×T 2,n) =



Z if k = 0

δnZ2 if k = 1

Zn+3 if k = 2

0 otherwise.

Remark 3.28. Similarly, as in Remark 3.26, we can identify the tori at infinity. In this
case, there are two tori on the circle bundle at infinity and both can be visualised as
the circle bundle over the 1-cycles on the asymptotic bases pace. Indeed, we already
found one of these tori, which can be viewed as one of the generators of Zn+1. By
studying ker ∂1 in a similar manner as in Remark 3.26, we can conclude that the
other torus must be a generator or ker ∂1 ≃ Z2.

The moduli space

We compare MB,n with the known classifications of gravitational instantons. All
gravitational instantons are classified by Sun & Zhang (2021) by comparing them to
model metrics at infinity. The list of all possible model metrics is given in Section
6.4 in their paper. For the case B = R3, recall from Lemma 3.4 that the metric on P
approximates the Gibbons-Hawking metric on R3 \ {0} with the harmonic function
h = const+2n−4

2r
. After completing P/Z2 using the gluing construction and per-

turbing the metric, we still expect that MR3,n approximates the same model metric
at infinity. Therefore, the space MR3,n is an example of an ALF-Dn gravitational
instanton12. The name ALF-Dk is not arbitrary: According to Chen & Chen (2019)
Remark 6.3, gravitational instantons of type ALF-Dn have an intersection matrix is
related to the Dn Dynkin diagram. This is exactly what Sen (1997) found.

Chen & Chen (2021a) found a Torelli theorem for ALF-type gravitational instan-
tons: Up to triholomorphic isometries all ALF-type gravitational instantons can be
uniquely classified by their model at infinity and their periods. For ALF spaces the
model at infinity is fully determined by the degree of the circle bundle at infinity
and the length of its fiber at infinity. These parameters correspond to the number
of non-fixed singularities pi and ϵ respectively. To calculate the period we have to
integrate the hyperkähler triple over a basis of H2(MR3,n) where each element has

12According to Definition 6.8 in Sun & Zhang (2021).
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self-intersection −2. There are 3 Kähler triples and the dimension of H2(MR3,n) is
n. Hence, the moduli space of ALF metrics with a fixed model space is 3n. This
number corresponds with the n possible positions of the nuts in R3.

When B = R2 × S1, the asymptotic metric of (P/Z2, g
GH) is given by

gGH ∼

ϵ(8− 2n) log r · (gR2/Z2
+ gS1) + ϵ

(8−2n) log r
η2∞ if 0 ≤ n < 4

gR2/Z2
+ gS1 + ϵ2(d t+ b d z)2 if n = 4.

(9)

For the case n < 4, gravitational instantons with these asymptotics are called13

ALG*-I∗4−n. For the case n = 4, it is called14 ALG 1
2
, because gGH approximates the

metric of a flat torus bundle over the 2-dimensional cone with angle 1
2
· 2π.

In order to explain the name, we have to deviate to the study of rational elliptic
surfaces: According to Chen & Viaclovsky (2021) Theorem 1.5 and Chen & Chen
(2021b) Theorem 1.2 gravitational instantons of type ALG*/ALG can be compact-
ified to a rational elliptic surface by adding a singular Kodaira fiber. In order to
find the type of fiber, we first need to understand the elliptic fibration of P/Z2 at
infinity. For this we equip the plane R2 inside B = R2 × S1 with the standard
complex structure and on the asymptotic region of P/Z2 we consider the following
composition of maps

P/Z2 → (R2 × S1)/Z2
≃−→ (C× S1)/Z2 → C/Z2.

This composition map gives P/Z2 the structure of a torus fibration at infinity.
Indeed, using the coordinates {r, ϕ, z, t} on P from Equation 8, one can check
that this projection map is holomorphic with respect to the complex structure
ωz = ϵ d z ∧ η + hϵ ∗B d z. The complex structure Iz corresponding to ωz has the
property Iz d z = − ϵ

hϵ
η, which implies the bi-holomophicity of the transition func-

tions.

Knowing that P/Z2 has an elliptic fibration, we can find the singular Kodaira fiber
by calculating the monodromy at infinity. For this we use the coordinates from
Equation 8 and we consider the path γr0,ϕ0,z0,t0(s) = (r0, ϕ0+ s, z0, t0+ c z0 s), which

13e.g. Definition 6.12 in Sun & Zhang (2021).
14e.g. Definition 6.11 in Sun & Zhang (2021).
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is horizontal with respect to the asymptotic connection15 η∞ = d t − cz dϕ + b d z.
In these coordinates, the Z2 action on P is given by

Z2 · (r, ϕ, z, t) = (r, ϕ+ π,−z,−t)

and so γr0,ϕ0,z0,t0(π) is equivalent to

γr0,ϕ0,z0,t0(π) = (r0, ϕ0 + π, z0, t0 + c z0 π) ∼ (r0, ϕ,−z0,−t0 − c z0 π).

Hence the generator [1t] ∈ H1(T
2), that is generated by the path along the circle

fiber, maps to −[1t] under the monodromy along γ. Similarly, the other generator
[1z] ∈ H1(T

2) maps to −[1z] − c
2
[1t]. When B = R2 × S1, the first Chern class c

equals 8− 2n, and hence the monodromy at infinity is given by(
−1 4− n

0 −1

)
.

Under the Kodaira classification MR2×S1,n can be compactified by an I∗4−n fiber,
which explains the name.

In Chen & Viaclovsky (2021), there is a Torelli Theorem for ALG* gravitational
instantons: Up to triholomorphic isometries all ALG*-type gravitational instantons
can be uniquely identified by their model at infinity and their periods. The model
at infinity is determined by the lattice and a global scale. Up to rotation, a one-
dimensional lattice is only determined by the length of its generator and so the
model at infinity is determined by two parameters.

In their paper they argue that the period map overcounts the moduli space. One
way to see this is by integrating the Kähler forms over the torus at infinity. Here the
Kähler forms are fixed by the model at infinity and so these integrals can only reveal
information of this model. Therefore, they claim that the dimension of the moduli
space of ALG* gravitational instantons with fixed model at infinity is 3(β2 − 1).
Using Proposition 3.25 we see that the dimension is 3n. Again this corresponds to
the n possible positions of the non-fixed singularities in R2 × S1.

Chen & Viaclovsky (2021) also found a Torelli theorem for ALG-type gravitational
15This connection is given in Proposition 3.13.
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instantons. As seen in Equation 9, the model metric is determined by three param-
eters, the length of the circle in the base space (i.e. gS1), the size of the circle fiber
(i.e. ϵ) and the choice of model connection (i.e. b). With these choices fixed, they
argue that the dimension of the moduli space is 3(β2 − 1) = 12. Again we expect
this as we have 12 degrees of freedom in choosing the location of the nuts.

Finally we consider the B = R × T 2 case. In this situation, the asymptotic metric
of (P/Z2, g

GH) is given by

gGH ∼

ϵ(16− 2n)r · (gR+ + gT 2) + ϵ
(16−2n)r

η2∞ if 0 ≤ n < 8

gR+ + gT 2 + ϵ2(d t+ a d y + b d z)2 if n = 8.

For the case n < 8, gravitational instantons with these asymptotics are called16

ALH*8−n. For the case n = 8, it is called17 ALH, because gGH approximates the
product metric of R+ and a flat 3-dimensional torus.

Similarly to the ALG*/ALG case, gravitational instantons with ALH*/ALH ends
can be compactified to rational elliptic surfaces by adding a (singular) Kodaira fiber.
According to Chen & Chen (2021b) Theorem 1.2, ALH gravitational instantons can
be compacified by the smooth I0 fiber, and according to T. C. Collins et al. (2020)
Theorem 1.4, ALH*k manifolds can be compactified by the non-regular Ik fiber. In
Remark 6.21, Sun & Zhang (2021) showed that k must be between 1 and 9. By
calculating the monodromy at infinity one can determine the type of fiber. The
method is very similar to the one for the ALG*/ALG case and was explicitly done
in Section 2.2 of Hein et al. (2022). The monodromy for this case is(

1 8− n

0 1

)
.

Hence one can compactify MR×T 2,n by adding an I8−n fiber.

T. Collins et al. (2022) and Lee & Lin (2022) determined the Torelli theorem for
ALH* gravitational instantons. Up to triholomorphic isometries, all ALH*-type
gravitational instantons can be uniquely identified by their model at infinity and
the periods. The model at infinity is determined by the lattice and a global scale.

16e.g. Definition 6.16 in Sun & Zhang (2021).
17e.g. Definition 6.15 in Sun & Zhang (2021).
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Up to rotation a 2-dimensional lattice is only determined the length its generators
and their angle. With 3n degrees of freedom in choosing the location of the non-
fixed singularities, we expect the total dimension of the moduli space to be 3n+ 7.
In a recent survey paper by T. C. Collins & Lin (2022), the dimension of the mod-
uli space of Tian-Yau metrics was calculated and it agrees with our dimension count.

As explained in Chapter 2, there are two known constructions for ALH* gravitational
instantons, due to Hein (2010) and Tian & Yau (1990). By T. C. Collins et al.
(2020), there are ALH* gravitational instantons that are not generated by Hein’s
construction, but according to Hein et al. (2021) any ALH* gravitational instanton
arises from the generalized Tian-Yau construction on some weak del Pezzo surface
minus a smooth anticanonical divisor. Up to diffeomorphism18 there are 10 different
(weak) del Pezzo surfaces: CP 2, the blow-up of CP 2 at up to 8 points and S2 × S2.
The degree of the anti-canonical divisor is 9−k for Blk CP 2 and 8 for S2×S2. Given
this degree, one can compare the construction by Tian-Yau and Hein: According
to T. C. Collins et al. (2021), a del Pezzo surface without a smooth anticanonical
divisor D with D2 = d can be compactified to a rational elliptic surface by adding
an Id fiber after performing a hyperkähler rotation. As the monodromy never allows
us to glue in an I9 fiber we conclude

Proposition 3.29. For 0 ≤ n ≤ 8, the space MR×T 2,n is not diffeomorphic to the
complement of a smooth anticanonical divisor of CP 2

When 1 ≤ n < 8, the monodromy of MR×T 2,n suggests one can compactify it to a
rational elliptic surface by adding an I8−n fiber. For the degrees one to seven, the
del Pezzo surfaces are unique and so we have:

Proposition 3.30. For 1 ≤ n < 8, the space MR×T 2,n is diffeomorphic to the
complement of a smooth anticanonical divisor of the blowup of CP 2 at 8 − n

points.

Up to diffeomorphism, there are two del Pezzo surfaces of degree 8, namely S2 ×S2

and Bl1CP 2. We claim that Bl1CP 2 cannot be used to construct MR×T 2,0.

18There are actually 11 different weak del Pezzo surfaces(Hidaka & Watanabe (1981), Theorem
3.4), but CP 1 × CP 1 and the second Hirzebruch surface are diffeomorphic.
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Proposition 3.31. The space MR×T 2,0 is not diffeomorphic to the complement
of a smooth anticanonical divisor of the blowup of CP 2 at one point.

Proof. Suppose it does arise from the Tian-Yau construction. Then MR×T 2,0 can be
compactified by gluing the disk bundle D at infinity. The boundary ∂D is an S1-
bundle over T 2 of degree 8. These identifications yields the following Mayer-Vietoris
sequence:

. . . H̃k(Bl1CP 2)oo H̃k(D)⊕ H̃k(MR×T 2,0)oo H̃k(∂D)oo . . .oo

0 0oo 0⊕ 0oo 0oo

0

oo

Z2 ⊕ Z2
oo Z2 ⊕ Z8

αoo

Z2

β

oo

Z⊕ Z3γoo Z2δoo

0

oo

0⊕ 0oo Zoo

Z

oo

0⊕ 0oo 0oo 0oo

Our goal is to show that the short exact sequence

0 // ker β // H2(Bl1CP 2)
β // im β // 0

cannot exist. First we study im β = kerα. From the Gysin sequence it follows
that the free part of H1(∂D) is generated by the homology of the base space of D.
Therefore the map α is of the form

Z2 ⊕ Z8
α // Z2 ⊕ Z2

(1, 0, 0) � // (1, 0, . . .)

(0, 1, 0) � // (0, 1, . . .)

Because α must be surjective,

Z2 ⊕ Z8
α // Z2 ⊕ Z2

(0, 0, 1) � // (0, 0, 1)
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and hence the kernel of α must be isomorphic to Z4. We conclude

0 // ker β // H2(Bl1CP 2)
β // Z4

// 0.

Secondly, we study ker β = im γ. By the first isomorphism theorem, im γ =
H2(D)⊕H2(MR×T2,0)

im δ
. According to Remark 3.28, we have H2(MR×T 2,n) ≃ Zn+1 ⊕

H2(∂D) by identifying the tori at infinity with the generators of H2(∂D). Hence, δ
is the inclusion map and ker β = im γ = H2(D)⊕ Z = Z2.

We explicitly give the generators of ker β: The first generator is the smooth anti-
canonical divisor of Bl1CP 2 to which D retracts. We denote this divisor as K−1.
The other generator is the generator of H2(MR×T 2,0) that cannot be represented as
a torus at infinity. We denote this 2-cycle as C. Both K−1 and C can be identified
as 2-cycles on the interior of their domain, and hence K−1 · C = 0. In summary,

(ker β) (im β)

0 // ⟨K−1, C⟩ // H2(Bl1CP 2)
β // Z4

// 0.

Finally, we study H2(Bl1CP 2). The space H2(Bl1CP 2) has two generators. One
is the generator of H2(CP 2), which we denote by H. The other is the exceptional
divisor E from the blowup. They intersect as follows:

H ·H = 1 H · E = 0 E · E = −1.

In terms of H and E, the anti-canonical divisor K−1 is given by K−1 = 3H − E.
As a sanity check, one can verify that this is the only 2-cycle up to orientation such
that K2 = 8. From the map β we get the following short exact sequence:

(ker β) (H2(Bl1CP 2)) (im β)

0 // ⟨K−1, C⟩ // ⟨H,E⟩ β // Z4
// 0

We claim there is no C ∈ ker β which makes this sequence exact. Indeed, suppose
C = αH + βE for some α, β ∈ Z. Because K−1 and C do not intersect,

K−1 · C = (3H − E) · (αH + βE) = 3α + β = 0
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and hence C = α(H − 3E). At the same time, E can be written as a Z-linear
combination of H and K−1. Therefore, H2(Bl1CP 2) is generated by H and K−1

and
C = α(H − 3E) = α(H − 3(3H −K−1)) = −8αH + 3K−1.

We conclude im β = ⟨H,K−1⟩
⟨C,K−1⟩ ≃ Z8α. There is no integer value for α which makes

this equal to Z4.

Alternatively, one can calculate the fundamental group of the complement of a
smooth anti-canonical divisor of the blowup of CP 2 at one point using the van
Kampen theorem. This way one can show that this complement is simply connected
and hence differs from MR×T 2,0.
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4 Fredholm theory for ALX gravitational instantons

In this chapter we will study the Laplacian on the asymptotic geometry of P/Z2.
A standard tool used in the literature is the use of weighted spaces. For example,
Bartnik (1986) considers the norm

∥ . . . ∥2
Wk,2

δ (Rn\K)
:=

k∑
j=0

∥rj−δ−n
2 ∇j . . . ∥2L2(Rn\K)

on Rn \ K for all δ ∈ R, k ∈ Z≥0 and some large compact set K. By introducing
r−δ−n

2 , one forces a certain polynomial decay rate at infinity. Because the harmonic
functions on Rn are polynomials for n ≥ 3, one can dictate the dimension of the
(co)-kernel by choosing δ. When δ lies in the range (2− n, 0), ∆ is bijective.

Instead of using weighted norms and a fixed operator, one can consider the weighted
operator Lδ := r2−δ∆Eucl(rδ . . .) on the fixed Banach space induced by the metric
gcf := r−2gEucl. It turns out that these methods are equivalent. Indeed, because
d log r and ∇g d log r are uniformly bounded in gcf , there exist some constants c, C >

0 such that for any u ∈ W 2,2
δ (Rn \K),

c∥u∥W 2,2
δ (R\K) ≤ ∥r−δu∥W 2,2

cf (R\K) ≤ C∥u∥W 2,2
δ (R\K).

Moreover, the operator Lδ is strictly elliptic with respect to gcf and so for any pair
of bounded open balls U ⊂⊂ U ′ not containing the origin, the Schauder estimate
by Evans (1998)

∥u∥W 2,2
cf (U) ≤ C

[
∥r2−δ∆(rδu)∥W 2,2

cf (U ′) + ∥u∥L2(U ′)

]
(10)

turns into
∥u∥W 2,2

δ (U) ≤ C
[
∥∆u∥W 2,2

δ−2(U
′) + ∥u∥L2

δ(U
′)

]
.

4.1 Bounded geometry

In order to extend equation 10 to an estimate on the asymptotic space, we need
to understand on which parameters C depends. For example, for Rn the constant
C only depends on the ellipticity of the operator and on the relative size of the
domains. In the above example this is also true: The conformally rescaled metric
gcf = (d log r)2+ gSn−1 is a cylindrical metric and we can move any fixed domain by

79



W.A. (Andries) Salm 4. Fredholm theory for ALX gravitational instantons

translation. By patching multiple local elliptic estimates we can establish a global
elliptic estimate19 like

∥u∥W 2,2
cf (Rn\K) ≤ C

[
∥r2−δ∆(rδu)∥W 2,2

cf (Rn\K) + ∥u∥L2(Rn\K)

]
.

In general, we study the behaviour of the constant C by comparing the metric gcf
with the flat metric. Namely, when using local coordinates, the dependence of C can
be found in the standard references on elliptic PDE’s (e.g. Evans (1998) or Gilbarg
& Trudinger (2001)). We only need to show that the Hölder and Sobolev norms
induced by these local coordinates are equivalent to the ones induced by gcf .

Definition 4.1. Let (M, g) be a Riemannian manifold, let U ⊂M , k, p ∈ N and
α ∈ (0, 1). The Sobolev space W k,p

g (U) is the space of all compactly supported
functions on U completed under the norm

∥u∥p
Wk,p

g (U)
:=

k∑
j=0

∥∇ju∥pLp(U).

The space Ck,α
g (U) is the space of all k times differentiable functions satisfying

∥u∥Ck,α
g (U) :=

k∑
j=0

sup
x∈U

∥∇ju(x)∥g +
∑
x,y∈U

d(x,y)<InjRadx(g)

∥∇ku(x)−∇ku(y)∥g
d(x, y)α

<∞

where d(x, y) is the geodesic distance between x and y and ∇ku(y) is compared to
∇ku(x) using parallel transport.

Remark 4.2. Notice that for the Euclidean metric, this definition coincides with the
standard definitions for Sobolev and Hölder spaces.

Proposition 4.3. Let (M, g) be a Riemannian manifold and {xi} local coordi-
nates such that the coordinate metric δ and g induce equivalent norms. If the first
k covariant derivatives of the connection form are bounded, then the W k,p and
Ck,α norms that are induced by g are equivalent to the ones induced by δ.

19This estimate can also be retrieved from the works of Lockhart & McOwen (1985) and of
Melrose & Mendoza (1983)
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Proof. Write ∇ = d + Γ where Γ is the connection form. Because Γ and its deriva-
tives are bounded, ∥∇ju∥g ≤ C

∑
l≤j ∥ d

l u∥δ for all j = 0, . . . , k. By the same
argument, the converse is also true. This shows the Sobolev norms are equivalent.

In order to compare the Hölder seminorms, we need to consider the variation of
a tensor field along geodesics. That is, let P y

x be the parallel transport along the
geodesic between y and x and V = V I ∂I be a tensor field. Because

∥V I(x)∂I − P y
xV

I(y)∂I∥g
d(x, y)α

≤ C
∥V I(x)∂I − V I(y)∂I∥δ

d(x, y)α
+ ∥V I(y)∥ · ∥∂I − P y

x∂I∥g
d(x, y)α

,

the Hölder norms are equivalent if ∥∂I−P y
x ∂I∥g

d(x,y)α
is uniformly bounded. To show this, let

γ : [0, d(x, y)] → U be the geodesic between x and y parametrized by arclength and
denote P γ(t)

γ(0)∂I in the local coordinates as (P
γ(t)
γ(0)∂I)

J∂J . By the parallel transport
equation and the fundamental theorem of calculus,

∥∂I − P y
x∂I∥g =

∥∥∥∥∫ 0

d(x,y)

∂

∂s

(
P

γ(s)
γ(0)∂I

)J
∂J d s

∥∥∥∥
g

=

∥∥∥∥∥
∫ d(x,y)

0

∇γ̇(s)∂I d s

∥∥∥∥∥
g

=

∥∥∥∥∥
∫ d(x,y)

0

∥∥∇γ̇(s)∂I
∥∥ d s∥∥∥∥∥

g

The connection form is given by the covariant derivative of ∂J and therefore, ∥∂I −
P y
x∂I∥g ≤ C∥Γ∥C0

g (U) · d(x, y) for some constant C > 0.

Our first guess is to apply Proposition 4.3 using Riemann normal coordinates, be-
cause in these coordinates we have the Taylor expansion

gij = δij −
1

3
Rikjlx

kxl +O(|x|3).

However, as explained by DeTurck & Kazdan (1981), normal coordinates are not
the best coordinates for this purpose, but harmonic coordinates are. Harmonic
coordinates are defined by the property ∆xi = 0 and are useful because in harmonic
coordinates the Ricci curvature can be viewed as an elliptic operator acting on the
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metric, i.e.

Ricij = −1

2
gkl

∂2gij
∂xk∂xl

+ . . . .

In the following theorem we show the existence of harmonic coordinates and give a
size estimate of the coordinate patches.

Theorem 4.4 (Theorem 1.2 in Hebey (1999)). Let k ∈ N, α ∈ (0, 1) and Q > 1.
Let (M, g) be a Riemannian manifold whose injectivity radius is bounded below by
some constant i > 0 and suppose there exists a constant C > 0 such that

∥∇j Ric ∥C0
g (M) ≤ C

for all j = 0, . . . , k. There exists a constant rH > 0 such that for any p ∈ M ,
there are harmonic coordinates {xi} on Br(p) that satisfy Q−1δµν < gµν < Q δµν

as bilinear forms, and

∑
1<j<k

rjH sup
y∈Br(p)

|∂(j)g(y)|+ rk+α
H sup

y,z∈Br(p)
y ̸=z

|∂(k)g(y)− ∂(k)g(z)|
|y − z|α

< Q− 1.

Remark 4.5. Recall that the injectivity radius estimates the largest ball on which the
Riemann normal coordinates are defined. Similarly, the constant rH in Theorem 4.4
estimates the largest ball on which the harmonic coordinates are defined and have
Ck,α control on the metric. Therefore, the constant rH is referred as the harmonic
radius in literature.

Theorem 4.4 is the key theorem we use to find elliptic estimates on our Riemannian
manifold. We already have seen we can get elliptic estimates on our Riemannian
manifold by considering elliptic estimates inside a coordinate chart and converting
the Euclidean norms to the Riemannian norms. Theorem 4.4 assures us the existence
of sufficiently large coordinate charts which fulfils all the prerequisites of Proposition
4.3. Moreover, it gives us explicit bounds of the metric in terms of the injectivity
radius and (the derivatives of) the Ricci curvature. This implies that the constants
in the elliptic estimates will also be bounded by these quantities. Therefore, if we can
bound the injectivity radius and (the derivatives of) the Ricci curvature uniformly
in x ∈M and in the collapsing parameter ϵ, our estimates will be uniform in x and
ϵ.
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To set up the analysis on the asymptotic region of P , we define the following nota-
tion:

Definition 4.6. Let π : P → B′ be the principal circle bundle on the Gibbons-
Hawking space and fix a large R0 > 0. We define the asymptotic part of B′ as
[R0,∞)×Σ ⊂ B′, where Σ is S2 or T 2 when B = R3 or B ̸= R3 respectively. We
denote the asymptotic part of P as

P∞ := P∞(R0) :=π
−1([R0,∞)× Σ).

Definition 4.7. Let gGH = hϵgB+ϵ
2h−1

ϵ η2 be the Gibbons-Hawking metric. Define

Ω =

h
− 1

2
ϵ if B = R× T 2

r−1h
− 1

2
ϵ otherwise,

where r is the Euclidean distance on R3, R2 or R when B = R3, B = R2 × S1 or
B = R× T 2 respectively. We define the conformally rescaled metric gcf as

gcf = Ω2 · gGH .

The difference between the case B = R×T 2 and the rest is due to the fact that the
harmonic functions on R × T 2 have exponential rather than polynomial growth or
decay. The conformal rescaling of h−1

ϵ in Ω is convenient, because for S1 invariant
functions the analysis reduces to the standard analysis on Rn. This is due to the
fact that hϵ∆GH = ∆B for S1 invariant functions. In order to apply Theorem 4.4,
we need to calculate the Ricci tensor for our metric. The metric gGH is hyperkähler
and hence it is Ricci flat. However, we consider the conformally rescaled metric gcf ,
which is not hyperkähler.

Lemma 4.8. Consider the Gibbons-Hawking manifold P with the metric gcf .
The Ricci curvature tensor and its first k covariant derivatives are given in terms
of d log Ω and its k + 1 covariant derivatives. In particular, on P∞ these are
uniformly bounded for ϵ ∈ (0, 1).
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Proof. According to Theorem 1.159 in Besse (1987), the Ricci curvature of gcf is
given by

Ric(gcf ) = Ric(gGH)−2(Hess(log Ω)+d log Ω⊗d log Ω)−(∆cf log Ω−2| d log Ω|2cf )g,

where the Hessian is calculated with respect to gcf . Because the Gibbons-Hawking
metric is Ricci-flat, ∇k Ric(gcf ) is bounded by d log Ω and its first k+1 derivatives.

In order to estimate (the derivatives of) d log Ω at infinity, we need to calculate the
derivatives of d log hϵ (and d log r when B ̸= R × T 2). To calculate ∇j d log r, we
first calculate the covariant derivative using the co-frames

{d log r, d θ, sin θ dϕ, ϵ
rhϵ
η} if B = R3,

{d log r, d θ, r−1 dϕ, ϵ
rhϵ
η} if B = R2 × S1,

{d r, d θ, dϕ, ϵ
hϵ
η} if B = R× T 2.

For uniformity, we denote ρ = log r when B ̸= R × T 2 and ρ = r otherwise.
According to the Koszul formula, the connection form is given in term of the the
exterior derivatives and the non-zero terms are

d(sin θ dϕ) =
1

tan(θ)
d θ ∧ sin(θ) dϕ if B = R3

d(e−ρ dϕ) =− d ρ ∧ e−ρ dϕ if B = R2 × S1

d(ϵe−ρh−1
ϵ η) =− (d ρ+ d log hϵ) ∧ (ϵe−ρh−1

ϵ η)

+ ∗cf (d log hϵ ∧ ϵe−ρh−1
ϵ η) if B ̸= R× T 2

d(ϵh−1
ϵ η) =− d log hϵ ∧ (ϵh−1

ϵ η) + ∗cf (d log hϵ ∧ ϵh−1
ϵ η) if B = R× T 2.

This implies that there are some constants C1, C2 > 0 such that

∥∇j d ρ∥cf ≤ C1 + C2

j−1∑
i=0

∥∇i d log hϵ∥cf .

In order to estimate d log hϵ =
1
hϵ
dhϵ, recall from Lemma 3.4 that h−1

ϵ is bounded
below, and hence, by repeated use of the Leibniz rule, one can show

∥∇j d log hϵ∥cf ≤ C3

j∑
l=0

∥∇l dhϵ∥cf

for some constant C3 > 0. Moreover, Lemma 3.4 shows that hϵ is exponentially
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close to 1 + ϵβe−ρ if B = R3

1 + ϵβρ otherwise

for some β > 0. Hence ∇k d log hϵ is bounded by the first k derivatives of d ρ, which
are bounded by the first k− 1 derivatives of d log hϵ. By induction, ∇k d log hϵ must
be uniformly bounded.

Before we continue our study in the bounded geometry of P∞, we first consider the
weighted operator and study its analytic properties:

Definition 4.9. Let Ω be as described in Definition 4.7. Consider

ρ =

r if B = R× T 2

log r otherwise,

where r is the Euclidean distance on R3, R2 or R when B = R3, B = R2 × S1 or
B = R× T 2 respectively. For all δ ∈ R, We define the weighted operator Lδ as

Lδ = e−δρΩ−2∆GH(eδρ . . .).

As shown in the proof of Lemma 4.8, d ρ has norm one and all its derivatives are
bounded uniformly for ϵ ∈ (0, 1). Therefore, we use this as the radial parameter by
which we will decay. We use the bounds on d ρ and its higher derivatives to show
that Lδ is strictly elliptic in the sense of Gilbarg & Trudinger (2001):

Proposition 4.10. For each δ ∈ R, the operator Lδ is a strictly elliptic operator
with bounded coefficients between Ck+2,α

cf and Ck,α
cf , uniformly in ϵ ∈ (0, 1). That

is, if one considers the local coordinates given in Theorem 4.4 and expands Lδ as

Lδ = aij∂i∂j + bi∂i + c,

then there exist λ,Λ > 0, independent of ϵ, such that

−aijξiξj ≥ λ|ξ|2 ∀ξ ∈ R4

and ∥aij∥C0,α
cf
, ∥bi∥C0,α

cf
, ∥c∥C0,α

cf
< Λ.
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Proof. For any twice differentiable function u, one can show

e−δρΩ−2∆GH(eδρu) =∆cfu+ 2⟨d log Ω− δ d ρ, du⟩cf
+ u ·

(
−δ2 − δ ∇∗

cf d ρ+ 2δ⟨d log Ω, d ρ⟩cf
)
· u.

Therefore, Lδ differs from ∆cf by a first order differential operator. The Laplacian
is always strictly elliptic and so we have left to show that Lδ − ∆cf has bounded
coefficients. This is true if (the derivatives of) d log Ω and d ρ are bounded. In the
proof of Lemma 4.8 this is shown explicitly.

We return to the study of the bounded geometry of P∞. Except for the injectivity
radius, all conditions stated in Theorem 4.4 are satisfied by Lemma 4.8. However, in
most cases the injectivity radius decays to zero. This is because the circle radius of
the fibers is 2πϵ

rhϵ
or 2πϵ

hϵ
respectively. To remedy this, we replace the fibers with their

universal cover. To be precise, we will consider local trivialisations over sufficiently
large, contractible open sets and we work on the universal cover over these trivial-
isations. We will show that, on these local universal covers, the injectivity radius
is bounded below. For this we use a result by Cheeger et al. (1982), which states
that it is sufficient to get a lower bound on Volcf (B1(p)) for all p ∈ P∞. Secondly,
we will determine how the Sobolev and Hölder norms change when we project them
back to neighbourhoods on P∞.

Lemma 4.11. On local universal covers of P∞, the injectivity radius is bounded
below, uniformly in ϵ ∈ (0, 1).

Proof. We explain the case B = R×T 2. Pick p = (x0, 0) ∈ P∞ and choose ϱ > 0 such
that the ball Bϱ(x0) ⊂ B is contractible. Next, we trivialise P |Bϱ(x0) ≃ Bϱ(x0)×S1

and consider the following rectangular neighbourhood on its universal cover:

Rϱ(p) :=

{
(x, t) ∈ Bϱ(x0)× R : |t| < hϵ(x)

ϵ
ϱ

}
We claim Rϱ(p) lies inside a circumscribed ball of fixed length. To show this, pick
(x, t) ∈ Rρ(p) and consider the path that goes parallel along the coordinate axis.
According to the gauge fix in Lemma 3.12, the length of this path is bounded above
by some uniform constant C > 0, and so Rϱ(p) lies inside the ball of radius C centred
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at p. The volume of Rϱ(p) is equal to

Volcf (Rϱ(p)) =

∫
x∈Bϱ(x0)

∫ hϵ
ϵ
ϱ

−hϵ
ϵ
ϱ

ϵ

hϵ
VolgB ∧ d t = 2VolgB(Bρ(x0)) =

8

3
πϱ3.

According to Cheeger et al. (1982), the injectivity radius at p on Rρ(p) is bounded
below uniformly in ϵ ∈ (0, 1).

When B = R2 × S1 the injectivity radius will still decay to zero at infinity. This is
due to the term 1

eρ
gS1 in the metric. However, when we consider P∞ as a T 2 bundle

and use this unwrapping trick for both decaying fibers at the same time, we still get
a lower bound on the injectivity radius.

Any function on P∞ can be lifted to periodic functions on these local universal
covers. This gives us two ways to measure these functions: We can measure them
using the Sobolev or Hölder norms on P∞ or using the respective norms on the local
universal cover. Due to the S1 invariance of the metric, we claim that their Hölder
norms are equivalent.

Lemma 4.12. Let V ⊆ P∞ be open such that V restricts to a trivial S1-bundle
or T 2-bundle respectively over a contractible base space. Let V̂ be the universal
cover of V . Then, for any u ∈ Ck,α

cf (V ),

∥u∥Ck,α
cf (V ) = ∥û∥Ck,α

cf (V̂ ),

where û is the lift of u in Ck,α
cf (V̂ ).

In the Sobolev case, the norms are not equivalent. Namely, a ball on a local universal
cover will contain multiple copies of the fundamental domain. Because the circle
radius may shrink to zero at infinity, the number of fundamental domains may not
be bounded. However, we can solve this issue by changing the volume form.

Lemma 4.13. Let r > 0 be less than the injectivity radius found in Lemma 4.11.
Let p ∈ P∞, let Br(p) be the ball of radius r in P∞ and let B̂r(p) be the ball of
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radius r on the local universal cover of P∞ at p. Consider the function

v2 =


eρhϵ

ϵ
if B = R3

e2ρhϵ

ϵ
if B = R2 × S1

hϵ

ϵ
otherwise.

Then, there exist 1 < M1 < M2 and 0 < C1 < C2, independent of p and ϵ, such
that for all u ∈ L2(Br(p))

C1∥v · u∥L2(Br/M2
(p)) ≤ ∥û∥L2(B̂r/M1

(p)) ≤ C2∥v · u∥L2(Br(p)),

where û is the periodic lift of u on B̂r(x).

Proof. We explain the case B = R× T 2. For the volume estimates, we again work
with the rectangular domains, described in the proof of Lemma 4.11,

Rϱ(p) :=

{
(x, t) ∈ Bϱ(x0)× R : |t| < hϵ(x)

ϵ
ϱ

}
,

where p = (x0, 0) in a local trivialisation. As explained in the proof of Lemma 4.11,
each rectangular domain lies inside a circumscribed ball whose radius only depends
on ϱ. We claim it also has an inscribed ball with the same property. Indeed, to
estimate the radius of the inscribed ball one picks an (x1, t1) ∈ B̂ϱ̃(x0, t0) for some
ϱ̃ > 0 and a geodesic γ between (x0, t0) and (x1, t1). To show that (x1, t1) lies inside
Rϱ(x0, 0) one needs to calculate the coordinates of x1. For example, to calculate the
ρ coordinate of x1 one uses

ρ(x1) =

∫ 1

0

d ρ(γ̇(t)) d t ≤
∫ 1

0

∥ d ρ∥ · ∥γ̇(t)∥ d t = Length(γ) < ϱ̃.

The radii of the inscribed and circumscribed balls determine the values of M1 and
M2. Using these balls, we only need to show

C1∥v · u∥2L2(Fϱ(p))
≤ ∥û∥2L2(Rϱ(p))

≤ C2∥v · u∥2L2(Fϱ(p))
,

where Fϱ(p) is the fundamental domain

Fϱ(p) := Bϱ(x0)× [−π, π].
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Let us estimate ∥û∥2L2(Rϱ(p))
. Because the circle radius of the fiber is 2πϵ

hϵ
, a rectan-

gular domain contains a number of fundamental domains between ⌊minRϱ

hϵ

2πϵ
ϱ⌋ and

⌈maxRϱ

hϵ

2πhϵ
ϱ⌉. Therefore, by the periodicity of û,

⌊min
Rϱ(p)

hϵ
2πϵ

ϱ⌋ · ∥u∥2L2(Fϱ(p))
≤ ∥û∥2L2(Rϱ(p))

≤ ⌈max
Rϱ(p)

hϵ
2πϵ

ϱ⌉ · ∥u∥2L2(Fϱ(p))
.

We can find C1 and C2 by bounding ⌊minRϱ

hϵ

2πϵ
ϱ⌋ and ⌈maxRϱ

hϵ

2πϵ
ϱ⌉ on these do-

mains. Asymptotically hϵ is approximated by 1 + ϵ(βρ + O(e−ρ)) for some β > 0,
and hence

⌊minRϱ(p)
hϵ

2πϵ
ϱ⌋

hϵ

2πϵ

≤ 1 +
minhϵ − hϵ

hϵ
= 1− ϵ

βϱ+O(e−ρ)

1 + ϵ(βρ+O(e−ρ))
≤ 1− ϵβϱ+O(e−ρ).

A lower bound and the bounds for ⌈maxRϱ(p)
hϵ

2πϵ
ϱ⌉ can be found similarly. Therefore,

there exist some constants C1, C2 > 0 such that

C1∥v · u∥2L2(Fϱ(p))
≤ ∥û∥2L2(Rϱ(p))

≤ C2∥v · u∥2L2(Fϱ(p))
.

As discussed before, the study of weighted operators is equivalent to the study of
weighted norms. Inspired by the form of Lδ and Lemma 4.13, we define the following
weighted norm.

Definition 4.14. Let Ω and gcf be as described in Definition 4.7 and let ρ be
as in Definition 4.9. For any k ∈ N, α ∈ (0, 1), δ ∈ R, we define the weighted
Hölder norm on U ⊆ P∞ as

∥u∥Ck,α
δ (U) = ∥e−δρ · u∥Ck,α

cf (U).

For any k ∈ N, δ ∈ R, we define the weighted L2 and Sobolev norm on U ⊆ P∞

as

⟨u, v⟩L2
δ(U) =⟨e−δρ u, e−δρ v⟩L̃2(U)

∥u∥2
Wk,2

δ (U)
=

k∑
n=0

∥ |∇n(e−δρ · u)|cf∥2L̃2(U)
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where L̃2(U) is the L2 norm with respect to the volume form

Ṽol :=


d ρ ∧ VolS2 ∧η if B = R3

d ρ ∧ VolS1×S1 ∧η if B = R2 × S1

d ρ ∧ VolT 2 ∧η if B = R× T 2.

4.2 Weighted local elliptic estimates

With all these ingredients we now have a method to establish elliptic estimates on
P∞. For example, to rephrase the estimate20

∥u∥Ck,α
Rn

≤ C
[
∥∆u∥Ck−2,α

Rn
+ ∥u∥C0

]
,

we follow the following steps:

Step 1: First we pick the radii of the balls on which we apply the estimates. Hence,
for any x ∈ P∞, we consider a neighbourhood V ⊆ P∞ which restricts to a trivial
S1- (resp. T 2-) bundle over a contractible base space. According to Lemma 4.11
we can pick V large enough such that the injectivity radius is bounded below uni-
formly for x ∈ P∞ and ϵ ∈ (0, 1). According to Theorem 4.4 there exists rH > 0

uniformly, such that BrH (x) can be equipped with harmonic coordinates. We pick
0 < r < r′ < rH .

Step 2: Fix k ∈ N≥2, α ∈ (0, 1) and δ ∈ R. Pick u ∈ Ck,α
δ (Br′(x)) and consider

∥u∥Ck,α
δ (Br(x))

. By Definition 4.14 we write

∥u∥Ck,α
δ (Br(x))

= ∥e−δρu∥Ck,α
cf (Br(x))

.

We picked our radii such that Br(x) can be equipped with harmonic coordinates.
Moreover, by Proposition 4.3 we can view the Hölder norm on the right hand side
as the Hölder norm induced by this chart.

Step 3: Next, we lift u ∈ Br′(x) to a periodic function û on the local universal cover
20This regularity result is a combination of Gilbarg & Trudinger (2001), Problem 6.1, Theorem

9.19 and Folland (1995) Theorem 6.33.
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inside B̂r′(x). By Lemma 4.12,

∥e−δρu∥Ck,α
cf (Br(x))

= ∥e−δρû∥Ck,α
cf (B̂r(x))

.

Because the local universal cover has bounded geometry, we are able to apply the
elliptic estimate

∥e−δρû∥Ck,α
cf (B̂r(x))

≤C
[
∥Lδ(e

−δρû)∥Ck−2,α
cf (B̂′

r(x))
+ ∥e−δρû∥C0(B̂′

r(x))

]
.

Step 4: Using the fact that Lδ is invariant under deck transformations, we project
down to balls on P∞, and by Lemma 4.12:

∥e−δρu∥Ck,α
cf (Br(x))

≤C
[
∥Lδ(e

−δρu)∥Ck−2,α
cf (B′

r(x))
+ ∥e−δρu∥C0(B′

r(x))

]
.

Using the definition of Lδ,

∥e−δρu∥Ck,α
cf (Br(x))

≤C
[
∥e−δρΩ−2∆GHu∥Ck−2,α

cf (B′
r(x))

+ ∥e−δρû∥C0(B′
r(x))

]
,

and we conclude:

Theorem 4.15. Let k ∈ N≥2, δ ∈ R and α ∈ (0, 1). For sufficiently small
0 < r < r′, there exists an uniform constant C > 0 such that for all x ∈ P∞ and
any distribution u on Br′(x) with Ω−2∆GHu ∈ Ck−2,α

δ (Br′(x)),

u ∈ Ck,α
δ (Br′(x))

and
∥u∥Ck,α

δ (Br(x))
≤ C

[
∥Ω−2∆GHu∥Ck−2,α

δ (Br′ (x))
+ ∥u∥C0

δ (Br′ (x))

]
.

Similarly, we get a local Schauder estimate using Sobolev norms. For this we use
the results on Rn from Evans (1998) (Theorem 1 in section 6.3.1) and Bandle &
Flucher (1998) (Theorem 7-12).

Theorem 4.16. Let k ∈ N≥2 and δ ∈ R. For sufficiently small 0 < r < r′, there
exists an uniform constant C > 0 such that for all x ∈ P∞ and any distribution
u on Br′(x) with Ω−2∆GHu ∈ Ck−2,α

δ (Br′(x)),

u ∈ W k,2
δ (Br′(x))
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and
∥u∥2

Wk,2
δ (Br(x))

≤ C
[
∥Ω−2∆GHu∥2

Wk−2,2
δ (Br′ (x))

+ ∥u∥2L2
δ(Br′ (x))

]
.

Theorem 4.17. Let δ ∈ R and α ∈ (0, 1). For sufficiently small 0 < r < r′,
there exists an uniform constant C > 0 such that for all x ∈ P∞ and any u ∈
C2,α

δ (Br′(x)),

∥u∥C0,α
δ (Br(x))

≤ C
[
∥Ω−2∆GHu∥C0,α

δ (Br′ (x))
+ ∥u∥L2

δ(Br′ (x))

]
.

4.3 Weighted asymptotic elliptic estimates

As shown in sections 8 to 10 of Pacard (2008), Fredholmness of an elliptic operator
can be shown using global Schauder estimates. In this section we prove similar
estimates on P∞. In order to describe these global estimates we need to slightly
increase the size of P∞. For this, recall from Definition 4.6 that P∞ := π−1([R0,∞)×
Σ) for some compact manifold Σ and large R0 > 0. Pick R1 slightly smaller than
R0 and define the slightly larger P ′

∞ as

P ′
∞ :=π−1([R1,∞)× Σ).

Their difference is given by

K∞ :=π−1([R1, R0]× Σ).

Theorem 4.18. Let k ∈ N≥2, α ∈ (0, 1) and δ ∈ R. There exists a uniform
constant C > 0 such that for any bounded u ∈ Ck,α

loc (P
′
∞/Z2) with Ω−2∆GHu ∈

Ck−2,α
δ (P ′

∞/Z2),
u ∈ Ck,α

δ (P∞/Z2)

and
∥u∥Ck,α

δ (P∞/Z2)
≤ C

[
∥Ω−2∆GHu∥Ck−2,α

δ (P ′
∞/Z2)

+ ∥u∥C0
δ (P

′
∞/Z2)

]
.

Furthermore, if u vanishes on ∂P ′
∞/Z2, then

∥u∥Ck,α
δ (P ′

∞/Z2)
≤ C

[
∥Ω−2∆GHu∥Ck−2,α

δ (P ′
∞/Z2)

+ ∥u∥C0
δ (P

′
∞/Z2)

]
.
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Proof. Let r and r′ be as described in the steps for Theorem 4.15. Because u ∈
Ck,α

loc (P
′
∞), u must lie in Ck,α

δ (Br′(x)) for all x ∈ P∞. Theorem 4.15 states that

∥u∥Ck,α
δ (Br(x))

≤C
[
∥Ω−2∆GHu∥Ck−2,α

δ (Br′ (x))
+ ∥u∥C0

δ (Br′ (x))

]
≤C

[
∥Ω−2∆GHu∥Ck−2,α

δ (P ′
∞) + ∥u∥C0

δ (P
′
∞)

]
.

Varying x ∈ P∞, we conclude that

∥u∥Ck,α
δ (P∞) = sup

x∈P∞

∥u∥Ck,α
δ (Br(x))

≤ C
[
∥Ω−2∆GHu∥Ck−2,α

δ (P ′
∞) + ∥u∥C0

δ (P
′
∞)

]
.

By working Z2 equivariantly on P∞, the first estimate follows.

For the boundary regularity estimate we use the same method, combined with Corol-
lary 6.7 from Gilbarg & Trudinger (2001), which states that, for any x close to the
boundary,

∥u∥Ck,α
δ (Br(x)∩P ′

∞) ≤C
[
∥Ω−2∆GHu∥Ck−2,α

δ (P ′
∞) + ∥u∥C0

δ (P
′
∞)

]
.

Using the same method one can extend Theorem 4.17 to a global version. For
Theorem 4.16, we need to use a summation method, similarly to Proposition 6.1.1
in Pacard (2008). Namely, we pick κ > 0 and write P ′

∞ as the union of annuli
An := π−1(BR0+κ(n+1) \ BR0+κn), and we sum the estimates for all annuli. Because
the radius of the circle fiber is uniformly bounded above we can cover An with a
fixed number of balls such that on each ball we can apply Theorem 4.16. For large
enough κ, we get the estimate

∥u∥2
Wk,2

δ (An)
≤C

n+1∑
m=n−1

[
∥Ω−2∆GHu∥2

Wk−2,2
δ (Am)

+ ∥u∥2L2
δ(Am)

]
for all n ∈ Z≥0. Taking the union over the first N annuli yields

∥u∥Wk,2
δ (

⋃N
n=1 An) ≤3C

N+1∑
n=0

[
∥Ω−2∆GHu∥Wk−2,2

δ (An)
+ ∥u∥L2

δ(An)

]
≤3C

[
∥Ω−2∆GHu∥Wk−2,2

δ (
⋃N+1

n=0 An) + ∥u∥L2
δ(

⋃N+1
n=0 An)

]
.
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If one assumes that u vanishes on the boundary of P ′
∞,

∥u∥Wk,2
δ (

⋃N
n=0 An) ≤3C

[
∥Ω−2∆GHu∥Wk−2,2

δ (
⋃n+1

n=0 An) + ∥u∥L2
δ(

⋃n+1
n=0 An)

]
.

Taking the limit N → ∞ we conclude:

Theorem 4.19. Let k ∈ N≥2 and δ ∈ R. There exists a uniform constant
C > 0 such that for any L2

δ-bounded u ∈ W k,2
loc (P

′
∞/Z2) with Ω−2∆GHu ∈

W k−2,2
δ (P ′

∞/Z2),
u ∈ W k,2

δ (P∞/Z2)

and
∥u∥Wk,2

δ (P∞/Z2)
≤ C

[
∥Ω−2∆GHu∥Wk−2,2

δ (P ′
∞/Z2)

+ ∥u∥L2
δ(P

′
∞/Z2)

]
.

Furthermore, if u vanishes on ∂P ′
∞/Z2, then

∥u∥Wk,2
δ (P ′

∞/Z2)
≤ C

[
∥Ω−2∆GHu∥Wk−2,2

δ (P ′
∞/Z2)

+ ∥u∥L2
δ(P

′
∞/Z2)

]
.

Theorem 4.20. Let k ∈ N≥2, α ∈ (0, 1) and δ ∈ R. There exists a uniform
constant C > 0 such that for any L2

δ-bounded u ∈ L2(P ′
∞/Z2) with Ω−2∆GHu ∈

C0,α
δ (P ′

∞/Z2),
u ∈ C0,α

δ (P∞/Z2)

and
∥u∥C0,α

δ (P∞/Z2)
≤ C

[
∥Ω−2∆GHu∥C0,α

δ (P ′
∞/Z2)

+ ∥u∥L2
δ(P

′
∞/Z2)

]
.

These estimates do not imply Fredholmness. However, as in Pacard (2008), if in
Theorem 4.19 we can change ∥u∥L2

δ(P
′/Z2) into ∥u∥L2

δ(K) for some compact set K, we
can show Fredholmness. For functions on the base space these estimates are well
known, and hence we need to study functions on the fiber separately. We now define
this decomposition explicitly.

Definition 4.21. For any continuous function u on P ′
∞ define the projections

ub(x, t) =
1

2π

∫
π−1(x)

u η
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and
uf = u− ub.

A continuous function u is called S1 invariant if u = ub. The function u is called
S1 non-invariant if u = uf . The operators that map u to ub and uf will be denoted
as πb and πf respectively.

By construction, the space of continuous functions on P ′
∞ has a direct sum decom-

position into S1 invariant and S1 non-invariant functions. Related to this splitting
there are three analytical properties which turn out to be useful.

Lemma 4.22. The operators Lδ and πb commute.

Proof. Let u ∈ C2,α
cf on a local trivialisation of P∞ and consider the Fourier series of

u. Using the S1 invariance of the metric and the various weight functions, one can
show that the Laplacian acts diagonally over this Fourier decomposition. Therefore,
it must commute with πb.

Lemma 4.23. On any S1 invariant domain U , the operators

πb : C
0(U) → C0(U)

πb : C
0,α
cf (U) → C0,α

cf (U)

πb : L̃
2(U) → L̃2(U)

are bounded. The same holds for πf .

Proof. For any u ∈ C0(U) and x ∈ U ,

|ub(x)| ≤
1

2π

∫ 2π

0

|u(eit · x)| d t ≤ 1

2π

∫ 2π

0

∥u∥C0(U) d t ≤ ∥u∥C0(U).

This implies the boundedness in the C0 case. When u ∈ C0,α
cf (U), then for all

x, y ∈ U sufficiently close to each other,

−∥u∥C0,α
cf (U) ≤

u(x)− u(y)

d(x, y)α
≤ ∥u∥C0,α

cf (U).
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By the S1 invariance of the metric

−∥u∥C0,α
cf (U) ≤

u(eit · x)− u(eit · y)
d(eit · x, eit · y)α

=
u(eit · x)− u(eit · y)

d(x, y)α
≤ ∥u∥C0,α

cf (U).

for all t ∈ R. Integrating this expression over t yields

−∥u∥C0,α
cf (U) ≤

1

2π

∫ 2π

0

u(eit · x)− u(eit · y)
d(x, y)α

d t =
ub(x)− ub(y)

d(x, y)α
≤ ∥u∥C0,α

cf (U).

From this we conclude ∥ub∥C0,α
cf (U) ≤ ∥u∥C0,α

cf (U). Finally, notice that in a local
trivialisation πb projects fiberwise to one of the Fourier modes of S1. Because the
Fourier modes form an orthonormal basis, this is a bounded operator on L2.

Proposition 4.24. Let x ∈ P ′
∞ and denote the orbit of x as S1 · {x}. For any

continuous function u that satisfies u = uf ,

∥u∥C0
cf (S

1·{x}) ≤2π
ϵ Ω√
hϵ
∥ du∥C0

cf (S
1·{x})

∥u∥L2(S1·{x}) ≤
ϵ Ω√
hϵ
∥ du∥L̃2(S1·{x}).

Specifically, when B = R3 or B = R2 × S1, these estimates simplify to

∥u∥C0
cf (S

1·{x}) ≤2π
ϵ

eρhϵ
∥ du∥C0

cf (S
1·{x})

∥u∥L2(S1·{x}) ≤
ϵ

eρhϵ
∥ du∥L2(S1·{x}),

and when B = R× T 2, they simplify to

∥u∥C0
cf (S

1·{x}) ≤2π
ϵ

hϵ
∥ du∥C0

cf (S
1·{x})

∥u∥L2(S1·{x}) ≤
ϵ

hϵ
∥ du∥L2(S1·{x}).

Proof. Let (x, t) ∈ P ′
∞. Because u is S1 non-invariant, there exists a t0 ∈ S1 such

that u(x, t0) = 0. By the fundamental theorem of calculus,

u(x, t) =

∫ t

t0

∂u

∂t
d t.
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From definition 4.7 we estimate the circle radius, and hence

u(x, t) ≤
∫ t

t0

∥ du∥cf · ∥∂t∥cf d t ≤ 2π
ϵ Ω√
hϵ
∥ du∥C0

cf (S
1·{x}).

In order to find the L2 estimate, write u(x, t) =
∑

n un(x)e
int and note that

∥u∥2
L̃2(S1·{x}) =

∫
|u|2 d t =

∞∑
n=1

u2n

≤
∞∑
n=0

n2u2n ≤ ∥ du(∂t)∥2L̃2(S1·{x}).

Therefore,
∥u∥2

L̃2(S1·{x}) ≤ ∥ du∥2
L̃2(S1·{x}) · ∥∂t∥

2
C0(S1·{x}).

Using the Poincaré inequality we are able to prove the Fredholmness of ∆GH . A
crucial fact we need is that the circle fiber collapses at infinity. This is true for all
cases except when P∞ is a trivial circle bundle. Hence we treat this case separately.

Theorem 4.25. Assume that B = R3 or B = R2 × S1. Fix δ ∈ R \ Z. There
exist some uniform 0 < R1 < R0 and C > 0 such that for any u ∈ W 2,2

δ (P ′
∞/Z2)

or u ∈ C2,α
δ (P ′

∞/Z2),

∥u∥W 2,2
δ (P∞/Z2)

≤C
[
∥Ω−2∆GHu∥L2

δ(P
′
∞/Z2) + ∥u∥L2

δ(K∞/Z2)

]
or

∥u∥C2,α
δ (P∞/Z2)

≤C
[
∥Ω−2∆GHu∥C0,α

δ (P ′
∞/Z2)

+ ∥u∥C0
δ (K∞/Z2)

]
respectively.

When u vanishes on ∂P ′
∞/Z2,

∥u∥W 2,2
δ (P ′

∞/Z2)
≤C

[
∥Ω−2∆GHu∥L2

δ(P
′
∞/Z2) + ∥u∥L2

δ(K∞/Z2)

]
or

∥u∥C2,α
δ (P ′

∞/Z2)
≤C

[
∥Ω−2∆GHu∥C0,α

δ (P ′
∞/Z2)

+ ∥u∥C0
δ (K∞/Z2)

]
respectively.

Proof. (N.B. In this proof the value of C will change from line to line.) Assume
without loss of generality that B = R3 and u ∈ W 2,2

δ (P ′
∞/Z2). Consider the case
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u = uf . From Theorem 4.19,

∥uf∥W 2,2
δ (P∞/Z2)

≤C
[
∥Ω−2∆GHuf∥L2

δ(P
′
∞/Z2) + ∥uf∥L2

δ(P
′
∞/Z2)

]
≤C

[
∥Ω−2∆GHuf∥L2

δ(P
′
∞/Z2) + ∥uf∥L2

δ(K∞/Z2) + ∥uf∥L2
δ(P∞/Z2)

]
.

Using the Poincaré inequality, we rewrite this as

∥uf∥W 2,2
δ (P∞/Z2)

≤C
[
∥Ω−2∆GHuf∥L2

δ(P
′
∞/Z2) + ∥uf∥L2

δ(K∞/Z2)

+
ϵ

e−R1 ·minP∞ hϵ
∥ duf∥L2

δ(P∞/Z2)

]
.

If we pick R1 such that ϵC
e−R1 ·minP∞ hϵ

< 1
2
, we conclude that

1

2
∥uf∥W 2,2

δ (P∞/Z2)
≤C

[
∥Ω−2∆GHuf∥L2

δ(P
′
∞/Z2) + ∥uf∥L2

δ(K∞/Z2)

]
.

Secondly, consider the case u = ub. For S1 invariant functions, Ω−2∆GH reduces
to the standard Laplacian ∆B on the basespace. As explained in the introduction
of this chapter, the operator ∆B is Fredholm in the norms given by Bartnik (1986)
when δ ̸∈ Z. By Lemma 4.8, these norms are equivalent to the Sobolev norms
introduced in Definition 4.14. Therefore, there exists a uniform constant C > 0

independent of u such that

∥ub∥W 2,2
δ (P∞/Z2)

≤C
[
∥Ω−2∆GHub∥L2

δ(P
′
∞/Z2) + ∥ub∥L2

δ(K∞/Z2)

]
.

Finally, consider the general case u = ub+uf . Combining the above estimates yields

∥u∥W 2,2
δ (P∞/Z2)

≤∥ub∥W 2,2
δ (P∞/Z2)

+ ∥uf∥W 2,2
δ (P∞/Z2)

≤C
[
∥Ω−2∆GHub∥L2

δ(P
′
∞/Z2) + ∥Ω−2∆GHuf∥L22δ(P ′

∞/Z2)

+∥ub∥L2
δ(K∞/Z2) + ∥uf∥L2

δ(K∞/Z2)

]
.

Using Lemma 4.22 and 4.23 we get

∥u∥W 2,2
δ (P∞/Z2)

≤2C
[
∥Ω−2∆GHu∥L2

δ(P
′
∞/Z2) + ∥u∥L2

δ(K∞/Z2)

]
,

which concludes the first estimate. The second estimate follows by a similar argu-
ment.
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In the above proof we picked P∞ such that ϵC
minP∞ e−ρhϵ

< 1
2

for all 0 < ϵ < 1. If
we want to use the same proof when B = R × T 2, we need to show ϵC

minP∞ hϵ
< 1

2
.

However, when P∞ is the trivial circle bundle, the function hϵ is bounded above (see
Lemma 3.4), and if C is sufficient large we arrive at a contradiction. However, by
forcing ϵ sufficient small, we still can require ϵC

minP∞ hϵ
< 1

2
and conclude:

Theorem 4.26. Assume that B = R×T 2. Let C as defined in Theorem 4.19 and
assume that ϵ < minP∞hϵ

4πC
. Fix δ ∈ R \ Z and α ∈ (0, 1). There exists a constant

C̃ > 0, such that for any u ∈ W 2,2
δ (P ′

∞/Z2) or u ∈ C2,α
δ (P ′

∞/Z2),

∥u∥W 2,2
δ (P∞/Z2)

≤C̃
[
∥Ω−2∆GHu∥L2

δ(P
′
∞/Z2) + ∥u∥L2

δ(K∞/Z2)

]
or

∥u∥C2,α
δ (P∞/Z2)

≤C̃
[
∥Ω−2∆GHu∥C0,α

δ (P ′
∞/Z2)

+ ∥u∥C0
δ (K∞/Z2)

]
respectively.

When u vanishes on ∂P ′
∞/Z2,

∥u∥W 2,2
δ (P ′

∞/Z2)
≤C̃

[
∥Ω−2∆GHu∥L2

δ(P
′
∞/Z2) + ∥u∥L2

δ(K∞/Z2)

]
or

∥u∥C2,α
δ (P ′

∞/Z2)
≤C̃

[
∥Ω−2∆GHu∥C0,α

δ (P ′
∞/Z2)

+ ∥u∥C0
δ (K∞/Z2)

]
respectively.

Corollary 4.27. Let W 2,2
δ,0 (P

′
∞/Z2) be the space of all W 2,2

δ (P ′
∞/Z2) functions that

satisfy u|∂P ′
∞/Z2 = 0. Under the conditions described in Theorem 4.25 or 4.26,

the operator
Ω−2∆GH : W 2,2

δ,0 (P
′
∞/Z2) → L2

δ(P
′
∞/Z2)

is Fredholm.

Proof. The proof is identical to the proof of Theorems 9.1.1 and 9.2.1 in Pacard
(2008). His argument goes as follows:

To show that the kernel is finite dimensional, one assumes the contrary and con-
siders an infinite sequence of orthonormal elements in the kernel. Using Rellich’s
compactness theorem one can find a subsequence that converges in L2

δ,0(K∞/Z2).
Using Theorem 4.25 or 4.26 one can show that this subsequence actually converges
inW 2,2

δ,0 (P
′
∞/Z2). Because each element in this sequence has norm one, the limit must

also have norm one. At the same time, the limit is orthonormal to each element in
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the sequence and so the norm of the limit must be zero. This is a contradiction.

To show that the range is closed, one considers a sequence ui ∈ W 2,2
δ,0 (P

′
∞/Z2) such

that Ω−2∆GHui converges to some f ∈ L2
δ(P

′
∞/Z2). It is sufficient to show ui is

bounded in L2
δ(P

′
∞/Z2), because in that case Rellich’s compactness theorem and

Theorem 4.25 or 4.26 imply there is a subsequence converging to u ∈ W 2,2
δ,0 (P

′
∞/Z2)

such that Ω−2∆u = f . To show boundedness, one assumes the opposite and con-
siders the normalised sequence ûi = ui/∥ui∥L2

δ(P
′
∞/Z2). Using Rellich’s compactness

theorem and Theorem 4.25 or 4.26 again, one can show there is a converging subse-
quence in the kernel of Ω−2∆. This limit can be chosen orthogonal to all elements
in the kernel and hence it is zero. At the same time its norm is equal to one.

4.4 Fredholm theory for the Laplacian

Knowing that the Laplacian is Fredholm, we study the kernel and co-kernel of
Ω−2∆GH on P ′

∞/Z2 with Dirichlet boundary conditions. First, we consider the ker-
nel of Ω−2∆GH . In the case δ < 0 injectivity follows from the maximum principle.
In the next proposition we get a better result for S1 non-invariant functions.

Proposition 4.28. There exist uniform R1 > 0 and δ̃ > 0, such that for any
δ < δ̃ and α ∈ (0, 1) there is no non-zero u ∈ C2,α

δ (P ′
∞/Z2) that satisfies

u is S1 non-invariant,

∆GHu = 0, and

u|∂P ′/Z2 = 0.

Proof. Let R > R1. Using the notation as in Definition 4.6 consider the set

Ur = π−1([R1, r]× Σ).

Using integration by parts, one can show that for any harmonic function u on Ur

and δ ∈ R,

∥ d(e−2δρu)∥2L2
GH(Ur)

=

∫
∂Ur

e−4δρu ∗GH du+ 4δ2 · ∥e−2δρu d ρ∥2L2
GH(Ur)

.
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With respect to gGH , the norm of d ρ is 1√
hϵ

or 1
r
√
hϵ

when B = R × T 2 or B ̸=
R × T 2 respectively. In any case this is bounded by one, but when B ̸= R × T 2

one can make this term arbitrary small by changing R1. By the Poincaré inequality,
∥e−2δρu∥2

L2
GH(Ur)

≤ 2πϵ · ∥ d(e−2δρu)∥2
L2
GH(Ur)

and hence

(1− 8πϵδ2 · ∥ d ρ∥2C0
GH(P ′

∞/Z2)
) · ∥ d(e−2δρu)∥2L2

GH(Ur)
≤
∫
∂Ur

e−4δρu ∗GH du.

We pick R1 and δ such that 8πϵδ2 · ∥ d ρ∥2
C0

GH(P ′
∞/Z2)

< 1.

Finally we use the fact that u vanishes on ∂P ′/Z2. We are left with

∫
∂Ur

e−4δρu ∗GH du =


ϵe(1−4δ)Ru(R)∂u

∂ρ
(R)

∫
Σ
VolS2 ∧ d t if B = R3

ϵe−4δRu(R)∂u
∂ρ
(R)

∫
Σ
VolS1×S1 ∧ d t if B = R2 × S1

ϵ e−4δR u(R)∂u
∂ρ
(R)

∫
Σ
VolT 2 ∧ d t otherwise.

When u ∈ Ck,α
δ (P ′

∞/Z2), then there is a constant C > 0 such that

∫
∂Ur

e−4δρu ∗GH du ≤C ·

e(1−2δ)R if B = R3

e−2δR otherwise.

This vanishes at infinity when δ > 0 or when δ > 1
2
. This implies that in the limit

r → ∞, ∥ d(e−2δρu)∥2
L2
GH(Ur)

= 0 and hence u must be a multiple of eδρ. The only
S1 non-invariant function that satisfies this is the constant zero function.

Corollary 4.29. There exist uniform R1 > 0 and δ̃ > 0, such that for any δ < δ̃

and α ∈ (0, 1) there is no non-zero u ∈ W 2,2
δ (P ′

∞/Z2) that satisfies

u is S1 non-invariant,

∆GHu = 0, and

u|∂P ′/Z2 = 0.

Proof. Using Theorem 4.18 and Theorem 4.20, u ∈ C2,α and we apply the result
from the Hölder case.
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One can solve the Laplace equation on R2 × S1 and R× T 2 using a Fourier decom-
position. A small calculation will show that only the zeroth Fourier component will
contribute when δ < 1. Therefore, we only need to study the Laplace equation on
R2 and R. These harmonic functions are well known and as a reminder we will give
them in the following Lemma:

Proposition 4.30. Any u ∈ C2,α
δ (P ′/Z2) or u ∈ W 2,2

δ (P ′/Z2) that satisfies

u is S1 invariant,

Ω−2∆GHu = 0, and

u|∂P ′/Z2 = 0,

will vanish when δ < 0. For δ ∈ (0, 1), u must be of the form

u =

λ+ µ · e−ρ if B = R3,

λ+ µ · ρ otherwise,

where λ, µ ∈ R are chosen such that u|∂P ′/Z2 = 0.

Next we focus on the cokernel. When one uses Sobolev spaces, one can calculate
the cokernel of an operator by studying the kernel of its formal adjoint. Because the
Laplacian is self-adjoint, we expect the formal adjoint of Lδ to be similar to itself.
In the next proposition we make this precise. Combining this with our knowledge
of the kernel from Proposition 4.30 we will get an explicit description of the range.

Proposition 4.31. Let W 2,2
δ,0 (P

′
∞/Z2) be the space of all W 2,2

δ (P ′
∞/Z2) functions

that satisfy u|∂P ′
∞/Z2 = 0. Under the conditions described in Theorem 4.25 or

4.26, f ∈ L2
δ(P

′
∞/Z2) lies in the image of

Ω−2∆GH : W 2,2
δ,0 (P

′
∞/Z2) → L2

δ(P
′
∞/Z2)

if and only if ⟨f, eρ · v⟩L̃2(P ′
∞/Z2)

= 0 (or ⟨f, v⟩L̃2(P ′
∞/Z2)

= 0 when B ̸= R3) for all

v ∈ kerΩ−2∆GH :

W
2,2
−(δ+1),0(P

′
∞/Z2) → L2

−(δ+1)(P
′
∞/Z2) if B = R3

W 2,2
−δ,0(P

′
∞/Z2) → L2

−δ(P
′
∞/Z2) otherwise.
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Proof. Because Lδ is Fredholm, we are left to calculate the formal adjoint of Lδ.
Recall from Definition 4.14 we equipped the Sobolev spaces with the volume form

Ṽol =

d ρ ∧ VolS2 ∧η if B = R3

d ρ ∧ VolT 2 ∧η otherwise.

Describing this using the volume form of gGH , we get

Ṽol =

ϵ−1 Ω2 e−ρVolGH if B = R3

ϵ−1 Ω2VolGH otherwise.

Hence for all compactly supported functions u and v,

⟨Lδu, v⟩L̃2(P ′
∞/Z2)

=⟨e−δρΩ−2∆GH(eδρu), v⟩L̃2(P ′
∞/Z2)

=ϵ−1 ·

⟨e−(δ+1)ρ∆GH(eδρu), v⟩L2
GH(P ′

∞/Z2) if B = R3

⟨e−δρ∆GH(eδρu), v⟩L2
GH(P ′

∞/Z2) otherwise.

Using the self-adjointness of the Laplacian,

⟨Lδu, v⟩L̃2(P ′
∞/Z2)

=

⟨u, L−(δ+1)v⟩L̃2(P ′
∞/Z2)

if B = R3

⟨u, L−δv⟩L̃2(P ′
∞/Z2)

otherwise.

Therefore, the formal adjoint of Lδ is L−(δ+1) or L−δ respectively. This implies
that f̃ ∈ L̃2(P ′

∞/Z2) lies in the image of Lδ : W̃
2,2
0 (P ′

∞/Z2) → L̃2(P ′
∞/Z2) if and

only if ⟨f̃ , ṽ⟩ = 0 for all v ∈ kerL−(δ+1) or v ∈ kerLδ respectively. Converting
this to a condition on weighted spaces, we conclude f = eδρf̃ lies in the image of
Ω−2∆GH : W 2,2

δ,0 → L2
δ if and only if ⟨f, eρ · v⟩ = 0 or ⟨f, v⟩ = 0 for all

v =

e(δ+1)ρṽ ∈ kerΩ−2∆GH : W 2,2
−(δ+1),0(P

′
∞/Z2) → L2

−(δ+1)(P
′
∞/Z2) if B = R3

eδρṽ ∈ kerΩ−2∆GH : W 2,2
−δ,0(P

′
∞/Z2) → L2

−δ(P
′
∞/Z2) otherwise.

When B = R3 the operator is injective for δ < 0. According to Proposition 4.31,
it must be surjective when δ > −1. Hence it is an isomorphism for δ ∈ (−1, 0).
However, when B ̸= R3 there is no δ ∈ R such that Ω−2∆GH is injective and
surjective at the same time. Hence we need to manually enlarge the domain without
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adding new elements to the kernel. We claim that when B ̸= R3, δ < 0 and |δ| ≪ 1

the operator
Ω−2∆GH : W 2,2

δ (P ′
∞/Z2)⊕ Rρ→ L2

δ(P
′
∞/Z2)

with Dirichlet boundary conditions is the isomorphism we are looking for. At first
sight this only changes the kernel, because ∆GHρ = 0, but the opposite is true.
Namely, the boundary condition u|∂P ′

∞/Z2 = 0 changes to (u + λρ)|∂P ′
∞/Z2 = 0,

which allows u to be non-zero at the boundary. Hence we actually study the oper-
ator Ω−2∆GH : W 2,2

δ (P ′
∞/Z2) → L2

δ(P
′
∞/Z2) for functions that are constant on the

boundary and we claim that this operator has an trivial co-kernel. In the follow-
ing proof, we will reparametrise W 2,2

δ (P ′
∞/Z2)⊕Rρ as W 2,2

δ,0 (P
′
∞/Z2)⊕Rϕ for some

function ϕ and show we have enough degrees of freedom to satisfy the conditions of
Proposition 4.31.

Theorem 4.32. Let δ ∈ (−1, 0) with |δ| sufficiently small. For any f ∈
L2
δ(P

′
∞/Z2) there exists a unique u ∈ W 2,2

δ (P ′
∞/Z2) or u ∈ W 2,2

δ (P ′
∞/Z2) ⊕ Rρ

such that

Ω−2∆GHu =f

u|∂P ′/Z2 =0

when B = R3 or B ̸= R3 respectively.

Proof. We only prove the case B ̸= R3. Let u + λρ ∈ W 2,2
δ (P ′

∞/Z2) ⊕ R such that
∆(u + λρ) = 0 and u + λρ|∂P ′ = 0. By Corollary 4.29 and Proposition 4.30, there
exist α, β ∈ R such that

u+ λρ = α + βρ,

because W 2,2
δ (P ′

∞/Z2) ⊕ Rρ ⊂ W 2,2
−δ (P

′
∞/Z2). Dividing both sides by ρ and taking

the limit ρ→ ∞,

β = lim
ρ→∞

(αρ−1 + β) = lim
ρ→∞

(uρ−1 + λ) = λ.

This automatically implies u = α. The only constant function that is part of
W 2,2

δ (P ′
Z2
) is the constant zero function and therefore α = 0. The boundary condi-

tion forces β = 0. This proves the injectivity of Ω−2∆GH .
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Before we consider the range of Ω−2∆GH , we need to set up the following: Let α ∈ R
be such that α+ρ vanishes on the boundary of P ′

∞/Z2. Let χ be a smooth bump func-
tion on P ′

∞/Z2 such that χ|∂P ′
∞/Z2 = 1 and assume that ⟨Ω−2∆GH(χρ), α+ ρ⟩ ≠ 0.

To prove surjectivity, consider f ∈ L2
δ(P

′
∞/Z2). There exists a β ∈ R such that

⟨f+β ·Ω−2∆GH(χρ), α+ρ⟩ = 0. According to Proposition 4.30 a+ρ spans the kernel
of Ω−2∆GH : W 2,2

−δ (P
′
∞/Z2) → L2

−δ(P
′
∞/Z2). This enables us to use Proposition 4.31

to show the existence of some û ∈ W 2,2
δ,0 (P

′
∞/Z2) such that

Ω−2∆GH(û) = f + β · Ω−2∆GH(χρ)

Because χ is compactly supported, u := û−β ·χρ is an element of W 2,2
δ (P ′

∞/Z2) and
we claim u + βρ ∈ W 2,2

δ (P ′
∞/Z2) ⊕ Rρ is the solution we are looking for. Because

∆GHρ = 0,
Ω−2∆GH(u+ βρ) = Ω−2∆GH(û− β · χρ) = f.

Using χ|∂P ′
∞/Z2 = 1 and û|∂P ′

∞/Z2 = 0,

u+ βρ|∂P ′
∞/Z2 = û+ β(1− χ)ρ|∂P ′

∞/Z2 = 0.

This proves surjectivity.
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5 Perturbation to hyperkähler metrics

In this chapter we combine all our results and finally prove Theorem 1.1. Before we
delve into the final part of this thesis, let us first recall what we have found in the
previous chapters, and what the main objectives are.

rj → ∞0 4ϵ
2
5 5ϵ

2
5

ϵ2

1+ϵαj
gAH / ϵ2

1+ϵαj
gTN ∼ gpi/gqj gGH

Asymptotic regionNear singularity pi/qj

Figure 8: Identifications of the approximate hyperkähler metric g on the complete
4-dimensional manifold MB,n.

In Chapter 3, we constructed an almost hyperkähler manifold MB,n using a glu-
ing construction. As shown in Figure 8, and proven in Theorem 3.23, the space
MB,n has several distinct regions: For each non-fixed point pi, there is a region with
the rescaled Taub-NUT metric. For each fixed point qj, there is a region with the
rescaled metric of the Atiyah-Hitchin manifold. There is a bulk region that was
constructed using the Gibbons-Hawking ansatz, and finally there are gluing regions
which connect everything into a complete, connected, almost hyperkähler manifold.

Our main objective is to transform the approximate solution into a genuine gravita-
tional instanton. In Section 2.2 we set the perturbation problem up, and explained
how the hyperkähler condition can be phrased as an elliptic equation. Our goal
is to solve this equation using the inverse function theorem. The main step is to
understand its linearised version. We claimed at the end of Section 2.2, that this
linearised version is an operator that is approximated by the Laplacian on functions.

To apply the inverse function theorem, we need the Laplacian to be an isomorphism
and its inverse to be bounded uniformly with respect to the collapsing parameter
ϵ. For this we need to extend the asymptotic analysis of Chapter 4 to the whole
of MB,n. This will be the main study of the next four sections: In section 5.1 we
extend our weighted norms and operators over the whole of MB,n and show that the
weighted operator is uniformly elliptic. In Sections 5.2 and 5.3 we extend our elliptic
estimates and we show that the Laplacian is Fredholm. Here we also determine the
(co)-kernel and explain for which spaces the Laplacian is bijective. The whole of
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Section 5.4 will be devoted to the proof of the uniform bounded inverse estimate.

Finally, in section 5.5 we revisit the inverse function theorem and we prove all the
claims we made in Section 2.2. Namely, we show that with the correct weighted
norms, our approximate solution is indeed approximately hyperkähler. Secondly,
we show that the linearized operator is a small perturbation of the Laplacian and
finally we show that the non-linear part of our error estimate acts ‘quadratically’.
This enables us to apply the inverse function theorem and prove the main result.

5.1 Global metric

In Chapter 4 we considered a conformally rescaled metric gcf = Ω2gGH and the oper-
ator Ω−2∆GH on the asymptotic region of MB,n. We introduced a radial parameter
ρ, and defined the weighted operator Lδ := e−δρΩ−2∆GH(eδρ . . .). We showed that,
with respect to gcf , the operator Lδ is elliptic. By analysing gcf , we found regularity
estimates for Lδ, and with these estimates we showed Lδ is Fredholm. We deter-
mined the (co)-kernel of this operator and, by extending the domain with a function
ϕ, we concluded Lδ is an isomorphism for δ < 0 and |δ| sufficiently small.

The functions Ω, ρ and ϕ were defined on the asymptotic region of our manifold
and in this section we will extend these functions to the interior. This choice can-
not be arbitrary if we want to show the existence of a uniformly bounded inverse.
Our choices are summarised in Definition 5.1, but before that we give a heuristic
argument for each of them.

r → ∞0 4ϵ
2
5 5ϵ

2
5

rTN = R3

rAH = R3

ri = R2

rj = R2 r = R1

gpicf / gqjcf

First we consider the metric near the gluing region. Up to double cover and depend-
ing on the kind of singularity, the metric g approximates the model metrics

gpi :=hpiϵ
(
d r2i + r2i gS2

)
+

ϵ2

hpiϵ
(ηpi)2, hpiϵ =1 + ϵ(αi +

1

2ri
),

gqj :=hqjϵ
(
d r2j + r2jgS2

)
+

ϵ2

h
qj
ϵ
(ηqj)2, hqjϵ =1 + ϵ(αj −

2

rj
).
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Because we have our error estimate with respect to gpicf and gqjcf , we will do our anal-
ysis with respect to these metrics21. These conformally rescaled metrics are part of
the metrics we studied in Chapter 4 and hence we can pick Ω and ρ as we defined
before, i.e. Ω := r−1

i (hpiϵ )
− 1

2 or Ω := r−1
j (h

qj
ϵ )−

1
2 and ρ := log ri or ρ := log rj respec-

tively. The function ϕ is only needed for the analysis on the asymptotic geometry
and so we pick ϕ := 0 on this region.

There is another reason why we measure this part with respect to the model metrics.
Namely, there are two ways to view the complete manifold MB,n. Normally we view
(MB,n, g) as a fixed manifold where the circle fibers decay and very small regions
are replaced by the Atiyah-Hitchin manifold and Taub-NUT spaces. Alternatively,
if we conformally rescale by ∼ 1

ϵ2
, we can view it as fixed Atiyah-Hitchin manifolds

and Taub-NUT spaces and the gluing is done ϵ−1 far away. For this second picture
we use that gAH is approximately the Taub-NUT metric gTN ′ with mass −4. To use
our asymptotic analysis from before, we want to measure our function spaces with
respect to gTN ′

cf := 1
r2AH(1−2r−1

AH)
gTN ′ . Using the identification ri = ϵ

1+ϵαj
rAH , one can

prove gTN ′

cf = g
qj
cf . Similarly, one can show gTN

cf = gpicf .

r → ∞0 4ϵ
2
5 5ϵ

2
5

rTN = R3

rAH = R3

ri = R2

rj = R2 r = R1

gTN / gAH

Secondly, consider large, fixed, ϵ-invariant, compact regions inside the Taub-NUT
spaces and the Atiyah-Hitchin manifolds. In these regions g = ϵ2

1+ϵαi
gTN or g =

ϵ2

1+ϵαj
gAH respectively. To make our estimates independent of ϵ, we conformally

rescale back to gTN and gAH , and hence we want Ω to be 1
ϵ

√
1 + ϵαi or 1

ϵ

√
1 + ϵαj

respectively. Because on compact sets all weighted norms are equivalent, we pick ρ
to be constant and again we pick ϕ = 0.

Having chosen gcf on the bubbles, on the gluing regions and on the asymptotic part of
MB,n, we now interpolate these metrics. For this we keep two things in mind. First,

21Technically, this choice implies gcf is not a conformal rescaling of g, because g only approxi-
mates the model metrics on the gluing region. To be consistent with the notation of Chapter 4,
we still use gcf for this globally defined metric.
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we pick the boundary of each region on places for which we have explicit control
of the metric. For example, we interpolate gAH and g

qj
cf only in the asymptotic

region of the Atiyah-Hitchin manifold, because we have the approximation gAH =

gTN ′
+ O(e−rAH ) only at infinity. Secondly, we want the transition between the

regions to happen on fixed compact sets, so that we can practically ignore them in
our analysis. Therefore, we define gcf as follows:

Definition 5.1. Let R1 > 0 be such that P ′
∞ := π−1([R1,∞)×Σ) is the asymptotic

region described in Section 4.3. Pick R2, R3 > 0 such that R2 ≪ 1 and R3 ≫ 1.
Consider MB,n as the disjoint union of the regions

{rTN < R3}, {rAH < R3},

{rTN > R3 and ri < R2}, {rAH > R3 and rj < R2},

{ri, rj > R2 and r < R1}, and {r > R1},

where rTN , rAH , ri, rj and r are the radial parameters induced by gTN , gAH , gpi,
gqj and gGH respectively. On the interior of each region, define the metric gcf and
the functions Ω, ρ, ϕ ∈ C∞(MB,n) as shown in the following tables and interpolate
the metric and functions on the overlap:

r → ∞0 4ϵ
2
5 5ϵ

2
5

rTN = R3 rj = R2 r = R1

gcf

Ω

ρ

ϕ

gTN

√
1+ϵαi

ϵ

log
(

ϵ
1+ϵαi

R3

)
0

gpicf = gTN
cf

r−1
i (hpiϵ )

− 1
2

log(ri)

0

gGH

1

1

0

gGH
cf

(Def. 4.7)
(Def. 4.9)
ϕ = ρ

Asymptotic regionNear singularity pi
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r → ∞0 4ϵ
2
5 5ϵ

2
5

rAH = R3 rj = R2 r = R1

gcf

Ω

ρ

ϕ

gAH

√
1+ϵαj

ϵ

log
(

ϵ
1+ϵαj

R3

)
0

g
qj
cf = gTN ′

cf

r−1
j (h

qj
ϵ )−

1
2

log(rj)

0

gGH

1

1

0

gGH
cf

(Def. 4.7)
(Def. 4.9)
ϕ = ρ

Asymptotic regionNear singularity qj

With this choice of gcf we define Hölder and Sobolev norms. We only introduced
the Sobolev norms to show bijectivity of the Laplacian. For this we don’t need
uniformity in ϵ and hence we can be less strict in our definition. However, this
sloppy work will imply that some estimates are not uniform.

Definition 5.2. Let gcf , Ω, ρ and ϕ be as described in Definition 5.1. Let Ṽol be
the volume form chosen in Definition 4.14 and extend it to a global volume form
on MB,n.

For all δ ∈ R, we define the weighted operator Lδ as

Lδ = e−δρΩ−2∆g(eδρ . . .).

For any k ∈ N, α ∈ (0, 1), and δ ∈ R, we define the weighted Hölder norm on
U ⊆MB,n as

∥u∥Ck,α
δ (U) = ∥e−δρ · u∥Ck,α

gcf
(U).

For any k ∈ N, δ ∈ R, we define the weighted L2 and Sobolev norm on U ⊆MB,n

as

⟨u, v⟩L2
δ(U) =⟨e−δρ u, e−δρ v⟩L̃2(U)

∥u∥2
Wk,2

δ (U)
=

k∑
n=0

∥ |∇n(e−δρ · u)|cf∥2L̃2(U)
,

where L̃2(U) is the L2 norm with respect to the volume form Ṽol.
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With this metric and operator we start our global analysis. We first show that
Ω−2∆g is elliptic and that this ellipticity is uniform in ϵ. We will also show that it
is uniform in δ if δ is restricted to a closed interval. This fact will be used when we
convert our results from Sobolev to Hölder norms.

Proposition 5.3. For all k ∈ N≥2, α ∈ (0, 1), δ ∈ R, the operator
Ω−2∆g : Ck,α

δ (MB,n) → Ck−2,α
δ (MB,n) is strictly elliptic in the sense of Propo-

sition 4.10. This property is uniform in ϵ. Moreover, if δ is restricted to a closed
interval, then Ω−2∆g is strictly elliptic uniformly with respect to δ and ϵ.

Proof. First consider the weightless case, i.e. when δ = 0. Later we generalise our
result to δ ∈ R. We study this operator on each region separately. First consider the
region inside the bubbles, i.e. where rTN < R3 or rAH < R3. Because Ω is constant,
Ω−2∆g = ∆gcf . By definition, the Laplacian is strictly elliptic and hence Ω−2∆g is.

Next consider the compact region away from the singularities and away from infin-
ity, i.e. when ri > R2, rj > R2 and r < R1. For this part there is no rescaling,
i.e. Ω−2∆g = ∆gcf , and ellipticity follows trivially. The ellipticity in the asymptotic
case (where r > R1) is already shown in Proposition 4.10.

Next consider the region near the gluing regions, i.e. when rAH > R3 and rj < R2.
For this let {xi} be Riemann normal coordinates with respect to gqj . In these
coordinates, Ω−2∆g is given by

Ω−2∆g =Ω−2 1√
|g|

∂

∂xi

(√
|g|gij ∂u

∂xj

)
.

The metric g is approximated by g = gqj + O(ϵ3r−1
j ) + O(ϵr4j ) = gqj + O(ϵ) and

therefore

Ω−2∆g =Ω−2(1 +O(ϵ))
∂

∂xi

(
(Id+O(ϵ))ij

∂u

∂xj

)
=Ω−2∆gqju+O(ϵ) · ∥ du∥C1,α

cf
.

The model operator Ω−2∆gqj we already studied in Section 4.1, and by Proposition
4.10 the operator Ω−2∆gqj is uniformly strictly elliptic. Hence, this must also apply
to Ω−2∆g. A similar statement is true for the gluing regions near the non-fixed
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singularities pi.

Finally, we study the boundary between the regions. Away from the singulari-
ties all interpolations happen on fixed compact sets between asymptotically sim-
ilar metrics and all relevant functions are uniformly bounded with respect to ϵ.
Therefore, these interpolations will not change the ellipticity of Ω−2∆g, and hence
Ω−2∆g : Ck,α

0 (MB,n) → Ck−2,α
0 (MB,n) is strictly elliptic uniform in ϵ.

In order to consider the case when δ ̸= 0, we just need to compare Lδ with Ω−2∆g.
Let xi Riemann normal coordinates of gcf and write

Ω−2∆g = αij
∂2

∂xi∂xj
+ βi

∂

∂xi
+ γ.

Then for all u ∈ C2(MB,n),

Lδ u :=e−δρΩ−2∆g(eδρu)

=Ω−2∆gu+ δ αij

[
∂u

∂xi

∂ρ

∂xj
+
∂ρ

∂xi

∂u

∂xj

]
+ δ ·

[
δ αij

∂2ρ

∂xi∂xj
+ βi

∂ρ

∂xi

]
· u.

This will be uniformly strictly elliptic if d ρ and ∇ d ρ are uniformly bounded. This
is true by construction. Moreover, the difference between e−δρΩ−2∆g(eδρu) and
Ω−2∆gu is linearly dependent on δ. Hence, if δ is fixed to a closed interval, Ω−2∆ is
strictly elliptic, uniformly with respect to δ and ϵ.

5.2 Bijectivity in Sobolev spaces

Next we study the domain and range of Ω−2∆g. In Section 4.4 this is already done
in the asymptotic region of our manifold MB,n, and we only need to extend these
results globally. For now, we restrict ourself to Sobolev norms. In the next section
we will focus on Hölder norms.

First we show that Ω−2∆ is Fredholm. For this we extend the regularity results
from Section 4.3 to MB,n. In the construction of MB,n we extended the bulk space
P∞/Z2 by some compact set. Hence, to get global elliptic estimates, we combine the
standard elliptic estimates on Riemannian manifold with the results from Section
4.3. Using this, we extend Theorems 4.19, 4.20, 4.25 and 4.26 without proof.
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Lemma 5.4. Let ϵ ∈ (0, 1), k ∈ N≥2 and δ ∈ R. There exists a constant Cϵ > 0

such that for any L2
δ-bounded u ∈ W k,2

loc (MB,n) with Ω−2∆gu ∈ W k−2,2
δ (MB,n),

u ∈ W k,2
δ (MB,n)

and
∥u∥Wk,2

δ (MB,n)
≤ Cϵ

[
∥Ω−2∆gu∥Wk−2,2

δ (MB,n)
+ ∥u∥L2

δ(MB,n)

]
.

Lemma 5.5. Let ϵ ∈ (0, 1), α ∈ (0, 1) and δ ∈ R. There exists a constant Cϵ > 0

such that for any u ∈ L2
δ(MB,n) with Ω−2∆gu ∈ C0,α

δ (MB,n),

u ∈ C2,α
δ (MB,n)

and
∥u∥C2,α

δ (MB,n)
≤ Cϵ

[
∥Ω−2∆gu∥C0,α

δ (MB,n)
+ ∥u∥L2

δ(MB,n)

]
.

Lemma 5.6. Let ϵ ∈ (0, 1). (When B = R × T 2, we also assume that ϵ is
sufficiently small.) Fix δ ∈ R \ Z. There exist a constant Cϵ > 0 and a compact
set K, such that for any u ∈ W 2,2

δ (MB,n),

∥u∥W 2,2
δ (MB,n)

≤Cϵ

[
∥Ω−2∆gu∥L2

δ(MB,n) + ∥u∥L2
δ(K)

]
.

Lemma 5.6 implies that the operator Ω−2∆g is Fredholm. With this we can study
the (co)-kernel explicitly. When B = R3, this is very straightforward due to the
maximum principle:

Theorem 5.7. Assume that B = R3. Let δ ∈ (−1, 0) and k ∈ N≥2. For any
f ∈ W k−2,2

δ (MR3,n) there exists a unique u ∈ W k,2
δ (MR3,n) such that

Ω−2∆gu =f.

Proof. By Lemma 5.4, it is sufficient to show Ω−2∆g : W 2,2
δ (MR3,n) → L2

δ(MR3,n) is
an isomorphism. Injectivity is trivial: Assume that u is a harmonic function. Be-
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cause δ < 0, u must be decaying. By the maximum principle u is arbitrary small
and hence u = 0. Therefore the kernel of Ω−2∆g is trivial.

Next we study the cokernel of Ω−2∆g : W 2,2
δ (MR3,n) → L2

δ(MR3,n). As we did in
chapter 4, this is equivalent in studying the cokernel of the weighted operator
Lδ : W

2,2
cf (MR3,n) → L2

cf (MR3,n). To find the formal adjoint, recall from Definition
5.2 that the L2-space is measured with respect to some volume form Ṽol. Let f be
the smooth function such that Ṽol = f 2Volg. The formal adjoint of Lδ is given by

L∗
δ = f−2eδρ∆g

(
f 2

Ω2
e−δρ . . .

)
,

which is L−(1+δ) on the asymptotic part of MR3,n. If δ > −1, the maximum principle
implies L∗

δ has a trivial kernel. Therefore, when δ ∈ (−1, 0), the operator Ω−2∆g is
bijective.

This argument fails when B ̸= R3, because the formal adjoint of Lδ is L−δ on
the asymptotic region. However, as in Theorem 4.32, we expect that the operator
Ω−2∆g : W k,2

δ (MB,n) ⊕ R ϕ → W k−2,2
δ (MB,n) will be bijective. We will show this

in three steps. First, we will give a preliminary result about the (co)-kernel of the
Laplacian. Secondly, we will use our results about the Dirichlet boundary conditions
to show surjectivity. Finally, we will prove injectivity.

Lemma 5.8. Assume that B ̸= R3. When δ < 0 the operator
Ω−2∆g : W 2,2

δ (MB,n) → L2
δ(MB,n) is injective. When δ > 0 the operator

Ω−2∆g : W 2,2
δ (MB,n) → L2

δ(MB,n) is surjective.

Proof. This is the maximum principle applied on Ω−2∆g and on its formal adjoint.

According to Lemma 5.8, there always exists an inverse, but this inverse might have
the wrong decay rate. Using the Poisson equation on the asymptotic region we will
show that this cannot happen.

Theorem 5.9. Assume that B ̸= R3. Let δ ∈ (−1, 0) with |δ| sufficiently small
and k ∈ N≥2. For any f ∈ W k−2,2

δ (MB,n) there exists a u ∈ W k,2
δ (MB,n) ⊕ Rϕ
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such that

Ω−2∆gu =f.

Proof. By Lemma 5.4 it is sufficient to show that Ω−2∆g : W 2,2
δ (MB,n) ⊕ Rϕ →

L2
δ(MB,n) is surjective. Let f ∈ L2

δ(MB,n). By Lemma 5.8 there exists a u ∈
W 2,2

−δ (MB,n) such that
Ω−2∆u = f.

Our goal is to show that u ∈ W 2,2
δ (MB,n) ⊕ Rϕ. Let χ be a small bump function

on MB,n that is one on ∂P ′
∞/Z2. By Theorem 4.32 there exist a function u∞ ∈

W 2,2
δ (P ′

∞/Z2) and λ ∈ R such that

Ω−2∆g(u∞ + λϕ) =f − Ω−2∆g(χu),

(u∞ + λϕ)|∂P ′/Z2 =0.

The term Ω−2∆g(χu) is added, because it induces the conditions

Ω−2∆g(u∞ + χu+ λϕ) =f,

(u∞ + χu+ λϕ)|∂P ′/Z2 =u.

At the same time, the restriction of u to the region P ′/Z2 also satisfies

Ω−2∆g(u) =f

u|∂P ′/Z2 =u,

and hence u∞+χu+λϕ−u is a harmonic function on P ′/Z2 with Dirichlet bound-
ary conditions. Because W 2,2

δ ⊕ Rϕ is a subset of W 2,2
−δ , and the harmonics of

W 2,2
−δ (P

′
∞/Z2) are known by Proposition 4.30,

u∞ + χu+ λϕ− u = α + βρ

for some α, β ∈ R. From this we make two observations: First, u+ α + (β − λ)ϕ is
an element of W 2,2

−δ (MB,n), and secondly, it is also equal to u∞+χu ∈ W 2,2
δ (P ′

∞/Z2).
Because MB,n is the union of a compact set with P ′

∞/Z2 and all weighted W 2,2
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norms on compact sets are equivalent,

u+ α + (β − λ)ϕ ∈ W 2,2
δ (MB,n).

We conclude u + α ∈ W 2,2
δ (MB,n) ⊕ Rϕ and Ω−2∆g(u + α) = f , which proves

surjectivity.

Theorem 5.10. Assume that B ̸= R3. Let δ ∈ (−1, 0) with |δ| sufficiently small
and k ∈ N≥2. The operator

Ω−2∆g : W k,2
δ (MB,n)⊕ Rϕ→ L2

δ(MB,n)

has a trivial kernel.

Proof. Assume the contrary, and let v be a non-zero element of W 2,2
δ (MB,n) and

λ ∈ R such that ∆(v + λϕ) = 0. If λ = 0, Lemma 5.8 implies v = 0 and this
contradicts our assumption. Therefore, we can rescale our harmonic function such
that λ = 1.

We claim that our assumption implies surjectivity of Ω−2∆g : W 2,2
δ (MB,n) → L2

δ(MB,n).
Indeed, let f ∈ L2

δ(MB,n). By Theorem 5.9 there must be a u ∈ W 2,2
δ (MB,n) and a

λ ∈ R such that Ω−2∆(u+ λϕ) = f . By our choice of v, we also have

Ω−2∆g(u− λv) = Ω−2∆g(u+ λϕ− λ(v + ϕ)) = f.

Hence u− λv ∈ W 2,2
δ (MB,n) is an inverse of f .

We claim that surjectivity of Ω−2∆g : W 2,2
δ (MB,n) → L2

δ(MB,n) leads to a contradic-
tion. Indeed, when Ω−2∆g is surjective, then Lδ is surjective and its formal adjoint
must be injective. As shown in the proof of Theorem 5.7, the formal adjoint is L−δ

on the asymptotic part of MB,n. Because δ < 0, the constants are part of the kernel
of L∗

δ , but we just have shown that the kernel of L∗
δ is trivial. Therefore, v does not

exist.
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5.3 Bijectivity in Hölder spaces

Knowing that Ω−2∆g is an isomorphism in weighted Sobolev norms, we can ask
whether the same result is true for Hölder norms. For this, we embed Hölder norms
into Sobolev spaces. This almost works, but we will lose some weight. Namely, for
any δ̃ > δ we have the embedding

C0
δ (MB,n) ⊂ L2

δ̃
(MB,n),

but this embedding is not uniform in δ̃. This change of weight does not interfere
with the injectivity proof, but complicates the surjectivity case. We will need regu-
larity results to regain the loss of weight.

Just as in the Sobolev case, we extend Theorems 4.18, 4.25 and 4.26 to MB,n. Again
we consider MB,n as the union of a compact set with the asymptotic region P ′

∞/Z2

and combine these results with the standard elliptic estimates on compact spaces.
Once more, we give these results without proof:

Lemma 5.11. Let ϵ ∈ (0, 1), k ∈ N≥2, α ∈ (0, 1) and δ ∈ R. There exists
a constant Cϵ > 0 such that for any bounded u ∈ Ck,α

loc (MB,n) with Ω−2∆gu ∈
Ck−2,α

δ (M),
u ∈ Ck,α

δ (MB,n)

and
∥u∥Ck,α

δ (MB,n)
≤ Cϵ

[
∥Ω−2∆gu∥Ck−2,α

δ (MB,n)
+ ∥u∥C0

δ (MB,n)

]
.

Lemma 5.12. Let ϵ ∈ (0, 1). (If B = R × T 2, also assume that ϵ is sufficiently
small.) Fix δ ∈ R\Z and α ∈ (0, 1). There exist a constant Cϵ > 0 and a compact
set K such that for any u ∈ C2,α

δ (MB,n),

∥u∥C2,α
δ (MB,n)

≤Cϵ

[
∥Ω−2∆gu∥C0,α

δ (MB,n)
+ ∥u∥C0

δ (K)

]
.

The injectivity of Ω−2∆g follows immediately from the embedding of Hölder into
Sobolev spaces:
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Theorem 5.13. Assume that δ < 0, k ∈ N≥2 and α ∈ (0, 1) When B = R3 the
operator

Ω−2∆: Ck,α(MB,n) → Ck−2,α(MB,n)

has a trivial kernel. When B ̸= R3 the operator

Ω−2∆: Ck,α(MB,n)⊕ Rϕ→ Ck−2,α(MB,n)

has a trivial kernel.

Proof. Let u be a harmonic function in the domain of Ω−2∆g. From the embed-
ding C0

δ (MB,n) ⊂ L2
δ/2(MB,n), u must be a harmonic function inside W 2,2

δ/2(MB,n) or
W 2,2

δ/2(MB,n)⊕ Rϕ respectively. By Theorems 5.7 and 5.10, u must vanish.

By embedding Hölder into Sobolev spaces we can always find an inverse, but this
inverse might have the wrong decay rate. In order to use Lemmas 5.11 and 5.12
to regain the correct weight, we need to ask how the constant Cϵ behaves under
variation of δ. We claim that Cϵ can be picked uniformly in δ.

Proposition 5.14. Pick ϵ, k, α and δ as described in Lemmas 5.11 or 5.12.
Moreover, assume that δ is restricted to some closed interval. Then the constant
Cϵ in Lemmas 5.11 and 5.12 can be chosen uniformly with respect to δ.

Proof. We focus on Lemma 5.11, as the other will follow similarly. By the relation-
ship between weighted norms and weighted operators, the estimate in Lemma 5.11
is equivalent to

∥u∥Ck,α
cf (MB,n)

≤ Cϵ

[
∥Lδu∥Ck−2,α

cf (MB,n)
+ ∥u∥C0

cf (MB,n)

]
.

By Proposition 5.3, the operator Lδ is strictly elliptic, uniformly in δ. This implies
that the local regularity estimates, from which Lemmas 5.11 and 5.12 originate, are
uniform in δ. Therefore, Lemmas 5.11 and 5.12 must be uniform in δ.

Alternatively, assume that Cϵ is not uniform in δ. Then, there must be sequences
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ui ∈ Ck,α
cf (MB,n) and δi ∈ R such that

∥ui∥Ck,α
cf (MB,n)

= 1, ∥Lδiui∥Ck−2,α
cf (MB,n)

→ 0,

∥ui∥C0
cf (MB,n) → 0, δi → δ.

We apply Lemma 5.11 on ui with the limiting weight δ, which yields

∥ui∥Ck,α
cf (MB,n)

≤ Cϵ(δ)
[
∥Lδui∥Ck−2,α

cf (MB,n)
+ ∥ui∥C0

cf (MB,n)

]
≤ Cϵ(δ)

[
∥Lδiui∥Ck−2,α

cf (MB,n)
+ ∥(Lδ − Lδi)ui∥Ck−2,α

cf (MB,n)
+ ∥ui∥C0

cf (MB,n)

]
.

In the proof of proposition 5.3, there is an comparison between Lδ and the un-
weighted operator Ω−2∆g. Using this explicit description of Lδ one can find a
bounded, first-order differential operator B such that

Lδi = Lδ + (δ − δi) ·B,

and the norm of B only depends on the ellipticity of the unweighted operator Ω−2∆g

and the interval on which δi resides. Therefore, ∥(Lδ−Lδi)ui∥Ck−2,α
cf (MB,n)

converges to
zero. By assumption, ∥Lδiui∥Ck−2,α

cf (MB,n)
and ∥ui∥C0

cf (MB,n) also converge to zero and
hence our regularity estimate implies ui converges to zero. This is a contradiction,
as the norm of ui is fixed to one.

With the uniform control of Cϵ we can finally prove the bijectivity of Ω−2∆g.

Theorem 5.15. Let δ ∈ (−1, 0) (with |δ| sufficiently small if B ̸= R3), k ∈ N≥2

and α ∈ (0, 1). For any f ∈ Ck−2,α
δ (MB,n), there exists an unique u ∈ Ck,α

δ (MB,n)

(or u ∈ Ck,α
δ (MB,n)⊕ Rϕ when B ̸= R3) such that

Ω−2∆gu =f.

Proof. Let f ∈ Ck−2,α
δ (MB,n). For any δ̃ ∈ (δ, δ/2), f is an element of L2

δ̃
(MB,n),

and according to Theorems 5.7 and 5.9 there exists a u ∈ W 2,2

δ̃
(MB,n) such that

Ω−2∆gu =f.

By Lemma 5.5, u is an element of C2,α

δ̃
(MB,n). Because Ω−2∆ is injective, the func-

tion u does not depend on the choice of δ̃.
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We claim u ∈ C0
δ (MB,n). Indeed, let x ∈ MB,n and consider |e−δρu|(x). We can

estimate this as
|e−δρu|(x) ≤ |e(δ̃−δ)ρ|(x) · ∥e−δ̃u∥C2,α

cf (MB,n)
.

Because δ̃ is not an indicial root, we can apply Lemma 5.12:

|e−δρu|(x) ≤ |e(δ̃−δ)ρ|(x) · Cϵ

[
∥e−δ̃ρ f∥C2,α

cf (MB,n)
+ ∥e−δ̃ρu∥C0(K)

]
≤ |e(δ̃−δ)ρ|(x) · Cϵ

[
∥e(δ−δ̃)ρ∥C2,α

cf (MB,n)
· ∥f∥C2,α

δ (MB,n)
+ ∥e−δ̃ρ∥C0(K) · ∥u∥C0(K)

]
.

On any fixed compact set, e−δ̃ρ is bounded uniformly in δ̃, because e−δ̃ρ is continuous
in δ. The term ∥e(δ−δ̃)ρ∥C2,α

cf (MB,n)
is bounded uniformly in δ̃, because e(δ−δ̃)ρ decays

when δ̃ > δ. Also, the constant Cϵ can be chosen uniformly with respect to δ̃ due
to Proposition 5.14. Therefore, there exists a constant C(ϵ, f, u|K) that depends on
Cϵ, ∥f∥C2,α

δ (MB,n)
and ∥u∥C0(K) such that

|e−δρu|(x) ≤ |e(δ̃−δ)ρ|(x) · C(ϵ, f, u|k).

For each x ∈ MB,n, we pick δ̃ > δ such that |e(δ̃−δ)ρ|(x) ≤ 2. This gives us an
estimate of |e−δρu|(x) which is uniform in δ̃ and so

∥u∥C0
δ (MB,n) = sup

x∈MB,n

|e−δρu|(x) ≤ 2C(ϵ, f, u|k) <∞.

This proves the claim u ∈ C0
δ (MB,n). From the regularity estimate in Lemma 5.11,

u ∈ Ck,α
δ , which shows surjectivity. Injectivity is shown in Theorem 5.13.

5.4 Bounded inverse estimate

Now we have shown that Ω−2∆g is an isomorphism, we can study the norm of its
inverse. By the open mapping theorem, Ω−2∆g has a bounded inverse for every
ϵ ∈ (0, ϵ0). To make the inverse function theorem work, we need the inverse to be
bounded uniformly in the collapsing parameter ϵ. We dedicate this section to the
proof of this:

Theorem 5.27. Let δ ∈ (−1, 0) (with |δ| sufficiently small if B ̸= R3), k ∈ N≥2,
and α ∈ (0, 1). There exist ϵ0, C > 0 such that for any collapsing parameter
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ϵ ∈ (0, ϵ0) and u ∈ Ck,α
δ (MB,n) (or u+ λϕ ∈ Ck,α

δ (MB,n)⊕ Rϕ when B ̸= R3),

∥u∥Ck,α
δ (MB,n)

≤C ∥Ω−2∆gu∥Ck−2,α
δ

if B = R3

∥u∥Ck,α
δ (MB,n)

+ |λ| ≤C ∥Ω−2∆g(u+ λϕ)∥Ck−2,α
δ

otherwise .

The proof of this theorem can be split into the following steps.

1. Assume that there is no uniform bounded inverse. There must be a sequence
of functions ui and a sequence ϵi > 0, such that ui has norm one, but ∆ui and
ϵi converge to zero22.

2. Using the regularity estimate, construct a sequence of points xi at which the
functions |ui| are uniformly bounded below, away from zero.

3. Modify the functions ui, such that their domain is on a fixed limiting space.

4. Use the Arzela–Ascoli theorem to find a subsequence that converges to a non-
zero harmonic function u.

5. Argue that the limiting space has no non-zero harmonic functions, and reach
a contradiction.

Depending on whether the xi will concentrate near one of the singularities, we will
pick different limiting spaces and apply different transformations to ui. But for each
case, we will follow the above steps.

Remark 5.16. The proof for the case B = R3 will be a simplified version of the proof
for the case B ̸= R3. Hence the rest of this section we only consider the latter case.

Step 1.

22When ϵ does not tend to zero, the operator Ω−2∆g is continuous in ϵ and hence, the existence of
the uniform bounded inverse can be done by taking limits. We only need to consider the non-trivial
case, when the collapsing parameter ϵ tends to zero.
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Lemma 5.17. Suppose that Theorem 5.27 is false. Then there exists sequences
ui ∈ Ck,α

δ (MB,n), λi ∈ R, ϵi ∈ (0, 1) and c > 0 such that

∥ui∥Ck,α
δ (MB,n)

+ |λi| = 1,

∥Ω−2∆g(ui + λiϕ)∥Ck−2,α
δ (MB,n)

→ 0,

∥ui∥Ck,α
δ (MB,n)

> c, and

ϵi → 0.

Proof. The first two conditions follow directly from the negation of Theorem 5.27.
We only need to show ∥ui∥Ck,α

δ (MB,n)
> c. Suppose not, and assume that ∥ui∥Ck,α

δ (MB,n)

converges to zero. Because |λi| ≤ 1, there must be a converging subsequence with
limit λ. Because ∥ui∥Ck,α

δ (MB,n)
+ |λi| = 1 and ∥ui∥Ck,α

δ (MB,n)
converges to zero, the

limit λ must be equal to ±1.

We claim that this implies ∆gϕ = 0. Because ϕ is supported on the asymptotic
region of MB,n, we can estimate

∥Ω−2∆gϕ∥C0
δ (B) =∥Ω−2∆g(λϕ)∥C0

δ (MB,n)

≤|λ− λi| · ∥Ω−2∆gϕ∥C0
δ (MB,n) + ∥Ω−2∆g(ui + λiϕ)∥Ck−2,α

δ (MB,n)

+ ∥Ω−2∆g∥op · ∥ui∥Ck,α
δ (MB,n)

.

The right hand side of this inequality converges to zero, and therefore ∆gϕ = 0.
The function ϕ is not a harmonic function, which yields a contradiction. Hence,
∥ui∥Ck,α

δ (MB,n)
is uniformly bounded away from zero.

Step 2. Next we study the property ∥ui∥Ck,α
δ (MB,n)

> c in more detail. Recall that

the Ck,α
δ is defined in terms of a supremum, i.e.

∥u∥Ck,α
cf (U) :=

k∑
j=0

sup
x∈U

∥∇ju(x)∥cf +
∑
x,y∈U

d(x,y)<InjRadx(gcf )

∥∇ku(x)−∇ku(y)∥cf
d(x, y)α

.
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This is equivalent to the norm

sup
x∈U

 k∑
j=0

∥∇ju(x)∥cf +
∑
y∈U

d(x,y)<InjRadx(gcf )

∥∇ku(x)−∇ku(y)∥cf
d(x, y)α


which enables us to define a ’pointwise norm’:

∥ui∥Ck,α
cf ({x}) :=

k∑
j=0

∥∇ju(x)∥cf +
∑
y∈U

d(x,y)<InjRadx(gcf )

∥∇ku(x)−∇ku(y)∥cf
d(x, y)α

.

Similarly, we can define a weighted ’pointwise norm’. Using these ’norms’, the
condition ∥ui∥Ck,α

δ (MB,n)
> c implies there is a sequence xi ∈ MB,n such that

∥ui∥Ck,α
δ ({xi}) >

c
2
> 0. The sequence of points xi can behave in two different

ways:

r → ∞0 4ϵ
2
5 5ϵ

2
5

rTN = R3

rAH = R3 rj = R2 r = R1

Case 2:
xi bounded away

from the singularities

Case 1:
xi concentrate near singularity

1. The sequence xi concentrates near a singularity. That is, there is a sub-
sequence of xi such that the radial coordinate ri or rj at xi converges to zero.

2. The sequence xi is bounded away from the singularities. That is, there is
a subsequence of xi such that the radial coordinate at xi is uniformly bounded
below.

At least one of these cases must happen, and we study them separately.

Remark 5.18. Normally, people also consider a third case when xi concentrate on
the gluing region. We however view this as a special situation of case 1.

Remark 5.19. The case when xi concentrate near a non-fixed point singularity pi, is
similar to the case when xi concentrate near a fixed point singularity qj. Therefore,
we only explain the latter case.
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Case 1: xi concentrates near a singularity.

Step 3. We consider the case when xi concentrates near a singularity. In this case
ui|{rj≤2rj(xi)} is uniformly bounded away from zero in the Ck,α

δ norm. At the same
time, {rj ≤ 2rj(xi)} can be viewed as a subset of the Atiyah-Hitchin manifold.
Therefore, we use the Atiyah-Hitchin manifold as our limiting space.

To make our contradiction argument work, we need the norms, operators and weights
on the limiting space to be invariant with respect to ϵ. We constructed gcf such that
this is true. We also chose Ω such that Ω−2∆g is ϵ-invariant. However, the radial
parameter ρ does depend on ϵ. To solve this we define a new ϵ-invariant radial
parameter ρAH := ρ − log

(
ϵ

1+ϵαj

)
and we equip the Atiyah-Hitchin manifold with

the weighted norm
∥u∥Ck,α

δ (AH) = ∥e−δρAHu∥Ck,α
gcf

(AH).

Luckily, the weighted operator Lδ is the same whether we use ρ or ρAH .

Next, we will restrict ui such that it is fully supported on the Atiyah-Hitchin
manifold. For this we consider the family of smooth step functions χi on MB,n

that are equal to 1 when rj ≤ 2rj(xi) and equal to 0 when23 rj ≥ R2. Then
ui · χi are compactly supported functions on the Atiyah-Hitchin manifold. Because
ui ∈ Ck,α

δ (MB,n) is equivalent to e−δρui ∈ Ck,α
cf (MB,n), we get

e−δ ρui = e−δ ρAH

(
ϵ

1 + ϵαj

)−δ

ui ∈ Ck,α
cf (MB,n).

With this insight, we consider a new sequence of functions ũi := χi ·
(

ϵ
1+ϵαj

)−δ

ui

defined on the Atiyah-Hitchin manifold. In the following lemma, we show that ũi
has the same properties as ui:

Lemma 5.20. Suppose that Theorem 5.27 is false and that xi concentrate near
a singularity qj. Let AH be the Atiyah-Hitchin manifold. Then the sequence

23R2 is defined in Definition 5.1.

124



5.4. Bounded inverse estimate W.A. (Andries) Salm

ũi := χi ·
(

ϵ
1+ϵαj

)−δ

ui ∈ Ck,α
δ (AH) satisfies

∥Ω−2∆gũi∥Ck−2,α
δ (AH) → 0,

∥ũi∥Ck,α
δ (AH) ≤ 1, and

∥ũi∥Ck,α
δ (AH) >

c

2
.

Proof. We only modified ui outside of the region where xi concentrates and hence,

∥ũi∥Ck,α
δ (AH) ≥ ∥ũi∥Ck,α

δ ({rj<2rj(xi)}) >
c

2
> 0.

The step function χi is chosen such that dχi and its derivatives are of order (log(R2)−
log(2rj(xi)))

−1 with respect to gcf and this converges to zero. Hence,

∥ũi∥Ck,α
δ (AH) = ∥χi·ui∥Ck,α

δ (MB,n)
≤ ∥χi∥Ck,α

cf (MB,n)
·∥ui∥Ck,α

δ (MB,n)
= ∥ui∥Ck,α

δ (MB,n)
= 1.

To estimate ∥Ω−2∆gũi∥Ck−2,α
δ (AH), notice that on the support of χi the function ϕ is

identically zero and

Ω−2∆g(χi · ui) = χi · Ω−2∆g(ui) + ui · Ω−2∆g(χi)− 2Ω−2⟨dχi, dui⟩g.

Using that g and gqj are equivalent norms and that dχi is decaying, we estimate

∥Ω−2∆g(ũi)∥Ck,α
δ (AH) ≤∥χi∥Ck,α

cf (MB,n)
· ∥Ω−2∆g(ui)∥Ck,α

δ (MB,n)

+ ∥ui∥Ck,α
δ (MB,n)

· ∥Ω−2∆g(χi)∥Ck,α
cf (MB,n)

+O
(

1

− log(rj(xi))

)
.

By Proposition 5.3, Ω−2∆gχi is uniformly bounded by ∥ dχi∥Ck,α
cf (MB,n)

and so

∥Ω−2∆gũi∥Ck−2,α
δ (AH) → 0.

Step 4. Next, we will find a subsequence of ũi which converges to some ũ ∈
Ck,α

δ (AH). We equipped the asymptotic region of the Atiyah-Hitchin metric with
the Taub-NUT metric with negative mass, for which we developed a rich regularity
theory in Chapter 4. This induces regularity estimates for Ω−2∆g. For example,
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Theorem 4.25 induces the lemma:

Lemma 5.21. There exists a uniform C > 0 and a compact set K ⊂ AH such
that for any u ∈ Ck,α

δ (AH),

∥u∥Ck,α
δ (AH) ≤C

[
∥Ω−2∆gu∥Ck−2,α

δ (AH) + ∥u∥C0
δ (K)

]
.

Proof. Because we equipped the asymptotic region the Atiyah-Hitchin metric with
the Taub-NUT metric with negative mass, we can apply Theorem 4.25 to get

∥u∥Ck,α
δ (AH\BR(0)) ≤C

[
∥Ω−2∆gqju∥Ck−2,α

δ (AH\BR′ (0))
+ ∥u∥C0

δ (K)

]
for sufficiently large 0 < R′ < R. At the same time Ω−2∆g is strictly elliptic, and
the metric gcf is independent of ϵ on BR(0). This implies that the Schauder estimate

∥u∥Ck,α
δ (BR(0)) ≤C

[
∥Ω−2∆gu∥Ck−2,α

δ (B2R(0)) + ∥u∥C0
δ (B2R(0))

]
is uniform in ϵ. Combining our results yields,

∥u∥Ck,α
δ (AH) ≤∥u∥Ck,α

δ (BR(0)) + ∥u∥Ck,α
δ (AH\BR(0))

≤C
[
∥Ω−2∆gu∥Ck−2,α

δ (AH) + ∥u∥C0
δ (K)

]
.

Using the Arzela-Ascoli theorem, there exists a subsequence of ũi which converges
to some ũ ∈ C0

δ (K) for any compact set K. When we apply Lemma 5.21 on this
sequence, we get

∥ũi − ũj∥Ck,α
δ (AH) ≤ C

[
∥Ω−2∆g(ũi − ũj)∥Ck−2,α

δ (AH) + ∥ũi − ũj∥C0
δ (K)

]
→ 0.

This implies that ũi is a Cauchy sequence in Ck,α
δ (AH) and hence it converges to

some ũ ∈ Ck,α
δ (AH).

Step 5. This limiting function is harmonic, because Ω−2∆ is a continuous operator.
By assumption, δ < 0, and hence ũ must be decaying. By the maximum principle
ũ must vanish everywhere. We conclude ∥ũi∥Ck,α

δ (AH) converges to zero, which con-
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tradicts the fact that ∥ũi∥Ck,α
δ (AH) > c/2 > 0. Therefore, the sequence xi cannot

concentrate near the singularities.

Case 2: xi is bounded away from the singularities

Step 3. Next we consider the case in which xi is bounded away from the singu-
larities. Again we need to modify ui, such that their domain is defined on a fixed
limiting space. The points {xi} lie inside the circle bundle P , on which the Gibbons-
Hawking metric is defined. The radius of the fibers of P are O(ϵ), and hence we
expect that, in the limit ϵi → 0, P collapses to its base space B′. At the same time,
the neighbourhoods we removed from B to get B′ shrink at rate O(ϵ2/5), and hence
we pick the flat space B as our our limiting space.

Next we construct a step function such that we can view ui as functions on P .
Because the points {xi} are bounded away from the singularities, there is a constant
RB such that rj(xi) > RB. Therefore, consider the family of smooth step functions χi

on MB,n that are equal to one when ri, rj ≥ RB and equal to zero when ri, rj ≤ 5ϵ2/5.
We consider a new sequence of functions ũi := ui · χi on P . Also, let ũbi be the S1-
invariant24 part of ũi. In the following lemma, we explain the behaviour of ũi and
ũbi :

Lemma 5.22. Suppose that Theorem 5.27 is false and xi are bounded away from
the singularities. Then, the sequences ũi := χ · ui ∈ Ck,α

δ (MB,n) and its S1

invariant part ũbi ∈ Ck,α
δ (B′) satisfy

∥Ω−2∆g(ũi + λiϕ)∥Ck−2,α
δ (P ) → 0, ∥Ω−2∆g(ũbi + λiϕ)∥C0,α

δ (B′) → 0,

c

2
≤ ∥ũi∥Ck,α

δ (P ) ≤ 1, and ∥ũi − ũbi∥C0
δ (P ) → 0.

Proof. The arguments that ∥Ω−2∆g(ũi+λiϕ)∥Ck−2,α
δ (P ) → 0 and c

2
≤ ∥ũi∥Ck,α

δ (P ) ≤ 1

are identical to the arguments given in Lemma 5.20. For the estimate on ∥Ω−2∆g(ũbi+

λiϕ)∥C0,α
δ (B), recall that gcf is constructed from S1-invariant metrics. Therefore, the

projection operator πb, that is defined in Definition 4.21, commutes with the Lapla-
24See definition 4.21.
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cian. By Lemma 4.23, the operator πb is uniformly bounded and hence

∥Ω−2∆g(ũbi + λiϕ)∥C0,α
δ (B′) ≤ ∥πb(Ω−2∆g(ũi + λiϕ))∥C0,α

δ (MB,n)

≤ C∥Ω−2∆g(ũi + λiϕ))∥C0,α
δ (MB,n)

→ 0.

Before we estimate ũfi := ũi − ũbi we prove the claim that for every x ∈ P , there is a
t ∈ [0, 2π] such that ũfi (eit · x) = 0. If not we can assume w.l.o.g. there is an x ∈ P

such that for all t ∈ [0, π], the function ũfi (eit · x) > 0. By Definition 4.21,

πb(ũ
f
i )(x) =

1

2π

∫ 2π

t=0

ũi(e
it · x) d t,

which is strictly greater than zero. At the same time, πb is a projection operator
and so πb(ũfi ) = πb(ũi − πb(ũi)) = 0. This is a contradiction and proves our claim.

Finally, we estimate ũi − ũbi . Fix x ∈ P and let t0 ∈ [0, 2π] such that ũi(eit0 · x) =
ũbi(e

it0 · x). By the fundamental theorem of calculus,

ui(x)− ui(e
it0 · x) = −

∫ t0

t=0

∂

∂t
ui(e

it · x) d t.

Using that ubi is S1-invariant,

|ũi(x)− ũbi(x)| ≤
∫ 2π

t=0

dui(∂t) d t ≤ ∥ d ũi∥gcf ·
∫ 2π

t=0

√
gcf (∂t, ∂t) d t,

and we see that this integral is the length of the fiber at x. Because gcf is equivalent
to gGH

cf , the length of the fiber decays with order O(ϵ). Hence,

∥ũi − ũbi∥C0
δ (P ) ≤ ∥ũi∥C1,α

δ (P ) · O(ϵ),

which converges to zero.

Step 4. Next we want to find a subsequence of ũbi + λiϕ which converges to some
twice differentiable harmonic function on B. First we need to determine what the
limiting metric will be. For this, notice that on the support of ũbi the metric gcf is
an interpolation of metrics that can be decomposed into some uniform metric g̃B on
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the base space and a part that is of order ϵ. For example, the metric

g
qj
cf = r−2

j d rj + gS2 +
ϵ2

rjh2ϵ
η2j

can be written in the form g̃B +O(ϵ) and the limiting metric is g̃B = r−2
j d rj + gS2 .

We conclude that in the limit ϵ → 0, the metric gcf degenerates to a metric on
B \ ∪{pi, qj}. Therefore, for any compact sets K ⊂ K ′ ⊂ B \ ∪{pi, qj}, we have the
Schauder estimate

∥ũbi − ũbj∥C2,α
g̃B

(K) ≤ C
[
∥Ω−2∆g(ũbi − ũbj)∥C0,α

g̃B
(K′) + ∥ũbi − ũbj∥C0

g̃B
(K′)

]
.

By introducing λiϕ, we can rewrite this as

∥ũbi − ũbj∥C2,α
g̃B

(K) ≤C
[
∥Ω−2∆g(ũbi + λiϕ)∥C0,α

g̃B
(K′) + ∥Ω−2∆g(ũbj + λjϕ)∥C0,α

g̃B
(K′)

+|λi − λj| · ∥Ω−2∆gϕ∥C0,α
g̃B

(K′) + ∥ũbi − ũbj∥C0
g̃B

(K′)

]
.

Combining this result with Arzela-Ascoli, there is a subsequence of ũbi which con-
verges in C2,α

g̃B
(K). By exhausting the punctured base space by compact sets, apply-

ing Arzela-Ascoli on each of them, and taking the diagonal sequence, we conclude:

Lemma 5.23. There exists a twice differentiable function ũb on B \∪{pi, qj} and
a λ ∈ [−1, 1], such that for any compact set K ⊂ B \ ∪{pi, qj},

ũbi →ũb ∈ C2,α
g̃B

(K)

λi →λ

and
∆B(ũb + λϕ) = ∆g(ũb + λϕ) = 0.

In the last part of the lemma, one has to notice that on the support of u the metric
g is gGH and ∆GH = 1

hϵ
∆B for S1-invariant functions.

Before we can make any qualitative statement about ũb + λϕ, we need to consider
its behaviour near the boundary of B \∪{pi, qj}. The decay behaviour near infinity
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follows from Theorems 4.25 and 4.26 as their estimates can be rewritten as

∥ũbi − ũbj∥C2,α
δ (P∞/Z2)

≤C
[
∥Ω−2∆g(ũbi + λiϕ)∥C0,α

δ (P ′
∞/Z2)

+ ∥Ω−2∆g(ũbj + λjϕ)∥C0,α
δ (P ′

∞/Z2)

+|λi − λj| · ∥Ω−2∆gϕ∥C0,α
δ (P ′

∞/Z2)
+ ∥ũbi − ũbj∥C0

δ (K∞/Z2)

]
.

The right hand side of this equation converges to zero and hence ũbi is a Cauchy
sequence in C2,α

δ (P∞/Z2). This implies ũb decays with order eδρ. Next we study
the behaviour near the punctures, where gcf is just the conformal metric gTN

cf or
gTN ′

cf . We claim that ũb can be smoothly extended over the singularities, and we
show this in two steps: First we will show that ũb has some polynomial divergence
near a singularity. Secondly, we will show that this decay is slow enough for it to be
a removable singularity. Again, the arguments are identical for fixed or non-fixed
singularities. Therefore, we only explain one of these cases.

Lemma 5.24. On any compact neighbourhood K of qj inside B and any δ̃ < δ,
r−2δ̃
j ũb ∈ C0(K).

Proof. Let ϵ̃ > 0 be arbitrary. There is some small open ball B(qj), such that on
this ball |rδ−δ̃

j | < ϵ̃. Hence, for any k, l ∈ N,

∥r−δ̃
j (ũbk − ũbl )∥C0(K) ≤∥rδ−δ̃

j ∥C0(B(qj)) ·
(
∥r−δ

j ũbk∥C0(B(qj)) + ∥r−δ
j ũbl∥C0(B(qj))

)
+ ∥rδ−δ̃

j ∥C0(K\B(qj)) · ∥r
−δ
j (ũbk − ũbl )∥C0(K\B(qj)).

By Lemma 5.22, r−δ
j ũbk approximates r−δ

j ũk, which is uniformly bounded, i.e. there
exists an N ∈ N such that for all k > N ,

∥r−δ
j ũbk∥C0(B(q)) ≤ ∥ũk − ũbk∥C0

δ (P ) + ∥ũk∥C0
δ (P ) ≤ 2.

Secondly, K \B(qj) is compact, and according to Lemma 5.23, one can chose N ∈ N
such that for all k, l > N ,

∥r−δ
j (ũbk − ũbl )∥C0(K\B(qj)) <

ϵ̃

∥rδ−δ̃
j ∥C0(K\B(qj))

.
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We conclude

∥r−δ̃
j (ũbk − ũbl )∥C0(K) ≤∥rδ−δ̃

j ∥C0(B(qj)) ·
(
∥r−δ

j ũbk∥C0(B(qj)) + ∥r−δ
j ũbl )∥C0(B(qj))

)
+ ∥rδ−δ̃

j ∥C0(K\B(qj))∥r
−δ
j (ũbk − ũbl )∥C0(K\B(qj))

≤5ϵ.

Therefore, r−δ̃ũbk is a Cauchy sequence in C0(K) and its limit is r−δ̃
j ũb.

Lemma 5.25. The function ũb can be smoothly extended to a gB-harmonic func-
tion on B.

Proof. Our goal is to show that ũb is an element of L2
geucl

on some compact set, con-
taining a singularity qj. If this is true, the standard Euclidean Schauder estimates
will imply ũb can be smoothly extended over qj.

By Lemma 5.24, r−δ̃
j ũb is bounded for all δ̃ < δ < 0 and therefore the weighted norm

∥u∥ :=

∫ R2

rj=0

∫
S2

r−4δ
j (ũb)2 d log rj ∧ VolS2

is finite. Let ψn be the spherical harmonics and expand ũb in term of ψn, i.e.

ũb :=
∞∑
n=0

(an r
n
j + bn r

−n−1
j )ψn.

By the orthonormality of the spherical harmonics,

∥u∥ =

∫ R2

rj=0

∫
S2

r−4δ
j (ũb)2 d log rj ∧ VolS2

=
∞∑
n=0

∫ R2

rj=0

r−4δ
j (an r

n
j + bn r

−n−1
j )2 d log rj.

Because |δ| ≪ 1, this can only be finite if bn = 0 for all n ∈ N0. This implies ũb is
in L2

geucl
on any compact set containing the singularities.

Step 5. With the asymptotic behaviour of ũb understood, we can now prove that
ũb = λϕ = 0. Indeed, the function ũb+λϕ is of order O(e−δρ) and the only harmonic
functions of these kind are constant. Because the map ϕ is unbounded, λ must be
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equal to zero. Finally, the function ũb is decaying, and the only constant that is
decaying is the constant zero function. Therefore, ũb = λϕ = 0. The implication
this has for ũi will be summarised in the following lemma.

Lemma 5.26. There exists a subsequences of ũi and λi, such that for any compact
set K ⊂ P ,

ũi → 0 ∈ C0
g̃B
(K), and λi → 0.

We finally prove that Lemmas 5.22 and 5.26 lead to a contradiction. Indeed, suppose
that the sequence xi is unbounded. Then Lemma 5.22 implies

0 <
c

2
≤ ∥ũi∥Ck,α

δ (P∞/Z2)
.

However, Theorems 4.25 and 4.26 imply

∥ũi∥C2,α
δ (P∞/Z2)

≤ C
[
∥Ω−2∆GH(ũi + λiϕ)∥C0,α

δ (P ′
∞/Z2)

+ |λi| · ∥Ω−2∆GHϕ∥C0,α
δ (P ′

∞/Z2)

+∥ũi∥C0
δ (K∞/Z2)

]
,

which, according to Lemmas 5.22 and 5.26, converges to zero.

The only possibility left is when xi has a subsequence that converges to some point
x in the interior of P . Up to some local universal cover, the metric gcf on P has
bounded geometry and hence the Schauder estimates imply

∥ũi∥C2,α
δ (Br(x))

≤ C
[
∥Ω−2∆GH (̃ui + λiϕ)∥C0,α

δ (B2r(x))
+ |λi| · ∥Ω−2∆GHϕ∥C0,α

δ (B2r(x))

+∥ũi∥C0
δ (B2r(x))

]
for some small radius r > 0. The right hand side of this inequality vanishes when i
tends to infinity and so ∥ũi∥C2,α

δ (Br(x))
will vanish also. This contradicts lemma 5.22,

because for sufficiently large i the points xi will concentrate inside Br(x), and hence

0 <
c

2
≤ ∥ũi∥Ck,α

δ (Br(x))
.

All possible cases lead to contradictions, and so we conclude:

132



5.5. Proof of the main theorem W.A. (Andries) Salm

Theorem 5.27. Let δ ∈ (−1, 0) (with |δ| sufficiently small if B ̸= R3), k ∈ N≥2,
and α ∈ (0, 1). There exist ϵ0, C > 0 such that for any collapsing parameter
ϵ ∈ (0, ϵ0) and u ∈ Ck,α

δ (MB,n) (or u+ λϕ ∈ Ck,α
δ (MB,n)⊕ Rϕ when B ̸= R3),

∥u∥Ck,α
δ (MB,n)

≤C ∥Ω−2∆gu∥Ck−2,α
δ

if B = R3

∥u∥Ck,α
δ (MB,n)

+ |λ| ≤C ∥Ω−2∆g(u+ λϕ)∥Ck−2,α
δ

otherwise .

5.5 Proof of the main theorem

In this section we prove Theorem 1.1 by showing that our approximate solutions from
Chapter 3 can be perturbed into genuine gravitational instantons. In Section 2.2,
we described this perturbation problem and showed that the hyperkähler condition
can be phrased as an elliptic equation. We claimed that this elliptic equation can
be solved using the inverse function theorem. Before we show that these claims
are indeed true, we first recall some facts and notation. Namely, in Section 2.2, we
introduced the projection operator

Tf : Mat3×3(R)⊗ Ω4(M) → Sym2
0(R3)⊗ Ω4(M)

P ⊗ µ 7→
(
1

2
P +

1

2
P ∗ − 1

3
Tr(P ) Id

)
⊗ µ,

(1)

and the wedge operator

Λ: Ω+(M)⊗ R3 →Mat3×3(R)⊗ Ω4(M)

σ 7→σ ∧ ω,
( 4)

and our goal was to find a triple of self-dual 2-forms ζ such that

1

2
Λ−1Tf(ω ∧ ω) + ∆ζ + 2Λ−1Tf(d d∗ ζ ∧ d d∗ ζ) = 0. (6)

We showed that if ζ satisfied Equation 6, then ω + 2dd∗ ζ is a hyperkähler triple.
In order to solve this equation, we use the following version of the inverse function
theorem:
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Theorem 2.15 (Inverse function theorem). Let F (x) = F (0)+L(x)+N(x) be a
smooth function between Banach spaces such that there exist r, q, C > 0 satisfying

1. L is an invertible linear operator with ∥L−1∥ < C,

2. ∥N(x)−N(y)∥ ≤ q · ∥x+ y∥ · ∥x− y∥ for all x, y ∈ Br(0), and

3. ∥F (0)∥ < min
{

1
4qC2 ,

r
2C

}
.

Then, there exists a unique x in the domain of F such that F (x) = 0 and ∥x∥ ≤
2C∥F (0)∥.

Let

F (ζ) := Ω−2∆ζ +
1

2
Ω−2Λ−1Tf(ω ∧ ω) + 2Ω−2Λ−1Tf(d d∗ ζ ∧ d d∗ ζ),

and identify the constant, linear and non-linear parts as

F (0) =
1

2
Ω−2Λ−1Tf(ω ∧ ω)

L(ζ) =Ω−2∆ζ

N(ζ) =2Ω−2Λ−1Tf(d d∗ ζ ∧ d d∗ ζ),

where ∆ is the Hodge Laplacian. According to Lemma 2.14, this Laplacian is equal
to D̸ 2 for some Dirac operator D̸. When we decompose ζ into

∑
i ui · ωi, where

ui ∈ C∞(MB,n), the Weitzenböck formula yields

D̸ 2 (ui ωi) = (∆gui) ωi − 2∇∇ui
ωi,

because D̸ ωi = 0. With Theorem 5.15 in mind we pick the domain of F to be
Ck+2,α

δ (MB,n) ·ω ⊆ Ω+(MB,n)⊗R3 (or (Ck+2,α
δ (MB,n)⊕Rϕ) ·ω when B ̸= R3). That

is, we pick self-dual 2-forms of the form
∑

i ui ·ωi and we define the norm of
∑

i ui ·ωi

as
∑

i ∥ui∥2Ck,α
δ (MB,n)

. Similarly, for the codomain we pick (Ck,α
δ (MB,n) · ω)⊗ R3.

Having defined F as a smooth map between Banach spaces, we show that the con-
ditions of Theorem 2.15 are satisfied. Most of the work will be relating the various
norms we used. We remind the reader that the calculations for all higher derivatives
will follow from the calculations of the C0 norm. Indeed, all the estimates used
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in this chapter are based from the error estimate in Theorem 3.23. As explained
in that section, this error estimate originates from our estimates of the harmonic
function h, for which all higher derivatives are known due to Remark 3.5. We chose
our norms such that all derivatives of h have the same decay rate and so the study
of the C0 norm is enough.

The constant part

First we need to estimate the constant term 1
2
Ω−2Λ−1Tf(ω ∧ ω) in Equation 6 with

respect to the norm (Ck,α
δ · ω) ⊗ R3. To examine Λ−1 ◦ Tf in local coordinates, let

µ ∈ Ω4(MB,n) be a volume form and define P : MB,n → Mat3×3(R) by

ωi ∧ ωj = Pijµ.

Then the composition of Tf and Λ is given by

Mat3×3(R)⊗ Ω4(MB,n)
Tf // Sym2

0(R3)⊗ Ω4(MB,n)
Λ−1

// Ω+(MB,n)⊗ R3

P ⊗ µ � // (P − 1
3
tr(P ) Id)⊗ µ � //

∑
ij

(
Id−1

3
tr(P )P−1

)
ij
ωj ⊗ ei,

where ei is the standard orthonormal basis on R3. In order to estimate 1
2
Ω−2Λ−1Tf(ω∧

ω), we need to estimate the components of Id−1
3
tr(P )P−1 with respect to the

Ck,α
δ (MB,n) norm. According to Theorem 3.23, ω is a hyperkähler triple outside the

gluing regions, and so Tf(ω∧ω) = 0. Inside the gluing regions, the triple ω satisfies

1

2
ωi ∧ ωj =

(
Id+O(ϵ7/5)

)
ij
⊗ Volg

qj
. (11)

Setting µ = Volg
qj and P = 2 Id+O(ϵ7/5), we conclude that 1

2
Ω−2Λ−1Tf(ω ∧ ω) is

of order O(Ω−2ϵ7/5) on the gluing regions and vanishes everywhere else. We claim

Lemma 5.28. On the gluing regions, Ω2 and all its derivatives are of order ϵ−4/5

with respect to gcf .

Proof. Without loss of generality, we focus on a gluing region near a fixed point
singularity qj. Here, the function Ω2 is given by e−2ρj(h

qj
ϵ )−1, where ρj = log(rj).

According to the product rule, the Ck norm of Ω2 is bounded by the Ck norm of e−2ρj
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and the Ck norm of (hqjϵ )−1. Because d ρj and its derivatives are uniformly bounded,
∥e−2ρj∥Ck = O(e−2ρj), which is of order ϵ−4/5 on the gluing region rj ∈ (4ϵ2/5, 5ϵ2/5).

We only need to show (h
qj
ϵ )−1 is uniformly bounded in all derivatives. By induction it

is enough to show that hqjϵ is bounded below and dh
qj
ϵ is bounded in all derivatives.

This lower bound is shown in Lemma 3.4. Furthermore, dh
qj
ϵ can be calculated

explicitly and has order O(ϵr−1
j ). On the gluing region, this order is O(ϵ3/5).

We conclude that Ω−2Λ−1Tf is of order O(ϵ11/5) on the gluing region. These errors
are measured with respect to the unweighted norm g

qj
cf . Using the definition of the

weighted norm25 we can reintroduce the weights and conclude:

Proposition 5.29. The constant term 1
2
Ω−2Λ−1Tf(ω∧ω) is of order O

(
ϵ
11−2δ

5

)
with respect to (Ck,α

δ (MB,n) · ω)⊗ R3.

The linearised equation

Next we study the linearised term L(ζ) = Ω−2∆ζ, where ∆ is the Hodge Laplacian
on Ω+(MB,n). As explained in the end of Section 2.2, the Weitzenböck formula
implies ∑

i

L(ui · ωi) = (Ω−2∆gui) · ωi − 2Ω−2∇g
∇gui

ωi,

for any twice differentiable set of functions ui. We have chosen the domain of L,
such that Ω−2∆g is an invertible operator with uniform bounded inverse. Hence L
have the same properties if Ω−2∇g

∇gui
ωi is sufficiently small. In this section we will

prove this fact. We will only focus on the gluing region near a fixed point singular-
ity qj, because on the other gluing regions we have the same estimates and outside
the gluing regions ∇gωi = 0 due to the hyperkähler property. Also, we ignore any
contributions from ϕ, because ϕ vanishes on the gluing region.

Just as before, we first do the calculation in the weightless case and reintroduce the
weights at the end. We will split the calculation of 2Ω−2∇g

∇gui
ωi into several steps.

First we calculate Ω−2∇gui and ∇gωi separately. The latter will be expanded into
two parts, as

∇gωi = (∇g −∇gqj )ωi +∇gqj (ωi − ω
qj
i ).

25Definition 5.2.
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For the intermediary steps we will use the induced Ck,α
cf norms on the spaces of

2-forms and vector fields, which we write as Ck,α
cf (Ω2(MB,n)) and Ck,α

cf (TMB,n). At
the end we estimate 2Ω−2∇g

∇gui
ωi in terms of Ck,α

δ (MB,n) · ω.

Lemma 5.30. There exists a uniform constant C > 0, such that for any u ∈
Ck+2,α

cf (MB,n),

∥Ω−2∇gu∥Ck+1,α
cf (TMB,n)

≤ C · ∥u∥Ck+2,α
cf (MB,n)

.

Proof. Using gcf = Ω2gqj and g = gqj+O(ϵ11/5) on the gluing region, dualise Ω−2∇gu

with respect to gcf to get

gcf (Ω
−2∇gu, . . .) = gqj(∇gu, . . .) = du+O(ϵ11/5)(∇gu, . . .).

Because Ω2 = O(ϵ−4/5) on the gluing region, the difference between Ω−2 ∇gu and
du is of order O(ϵ7/5), which proves the lemma.

Next we will estimate (∇g−∇gqj )ωi. We already know that ωi is uniformly bounded
with respect to gqj and that it is of order O(ϵ4/5) with respect to gcf . Hence, we
only need to estimate ∇g −∇gqj .

Lemma 5.31. With respect to gcf , the term ∇gqj −∇g (and its derivatives) are
of order O(ϵ7/5) on the gluing region.

Proof. Using the formula for the Christoffel symbols in Riemann normal coordinates
of gcf , the error term is of the form

1

2
gimqj

[
∂

∂xl
(
gmk − g

qj
mk

)
+ . . .

]
+

1

2
(gim − gimqj )

[
∂gmk

∂xl
+ . . .

]
.

The difference between g and gqj is of order O(ϵ11/5). Also, g−1 = Ω2g−1
cf = O(ϵ−4/5)

and hence ∇gqj −∇g simplifies to

O(ϵ7/5) +O(ϵ11/5) ·

[
∂ Ω−2 · gcfmk

∂xl
+ . . .

]
.

This is of order O(ϵ7/5).
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Lemma 5.32. On the gluing region, the term ∇gqj (ωi − ω
qj
i ) is of order O(ϵ11/5)

with respect to Ck,α
cf (Ω2(MB,n)).

Proof. According to Theorem 3.23, on the gluing region ωi−ω
qj
i is of order O(ϵ11/5)

with respect to gqjcf . In terms of the Riemann normal coordinates {xk} for gqjcf , we
calculate[
∇gqj

∂xi
(ωi − ω

qj
i )
]
(∂xk, ∂xl) =L∂xi

[
(ωi − ω

qj
i )(∂xk, ∂xl)

]
+ (ωi − ω

qj
i )(∇gqj

∂i
∂xk, ∂xl) + (ωi − ω

qj
i )(∇gqj

∂i
∂xk, ∂xl)

=O(ϵ11/5) +O(ϵ11/5) · ∥∇gqj

∂xi
∂xk∥cf .

By the Koszul formula, ∇gqj

∂xi
∂xk is bounded by d log Ω, which is uniformly bounded.

Therefore, ∇gqj (ωi − ω
qj
i ) and all its derivatives are of order O(ϵ11/5).

We conclude that on the gluing region Ω−2∇g
∇gui

ωi is of order O(ϵ11/5) with respect
to the induced norm of gcf on Ω+(MB,n). However, in the beginning of this section
we equipped Ω+ with the Ck+2,α

cf (MB,n) · ω norm instead. To convert to this norm,
we project Ω−2∇g

∇gui
ωi to the approximately orthogonal basis {ωi}, whose basis ele-

ments satisfy ∥ωi∥cf = O(ϵ4/5). Therefore, with respect to the norm Ck+2,α
cf (MB,n)·ω,

the form Ω−2∇g
∇gui

ωi is of order ϵ7/5. The only thing left is to reintroduce the
weights:

Proposition 5.33. The operator 2Ω−2∇g
∇g(...)ωi between Ck+2,α

δ (MB,n) (or
Ck+2,α

δ (MB,n) ⊕ Rϕ when B ̸= R3) and Ck+1,α
δ (MB,n) · ω is a bounded opera-

tor with an operator norm of order O(ϵ7/5). In particular, for sufficiently small
ϵ > 0, the map Ω−2∆Hodge is an isomorphism with uniform bounded inverse.

Proof. Let ui in the domain and consider 2Ω−2∇g
∇gui

ωi. In local normal coordinates
this operator can be written as

2Ω−2∇g
∇gui

ωi =

(
Ajk ∂ui

∂xk
+Bj · ui

)
ωj,

where Ajk and Bj are smooth functions of order O(ϵ7/5) with respect to gcf . To esti-
mate these in the Ck+1,α

δ (MB,n)·ω norm, we need to calculate e−δρ
(
Ajk ∂ui

∂xk
+Bj · ui

)
.
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This can be written as

e−δρ

(
Ajk ∂ui

∂xk
+Bj · ui

)
=Ajk ∂(e

−δρui)

∂xk
+

(
δ Ajk ∂ρ

∂xk
+Bj

)
· e−δρui.

Using e−δρui ∈ Ck+2,α
cf (MB,n), we conclude

∥2Ω−2∇g
∇gui

ωi∥Ck+1,α
δ (MB,n)·ω ≤ O(ϵ7/5) · ∥ui∥Ck+2,α

δ (MB,n)
,

which proves the first statement. The second statement follows from the Weitzen-
böck formula.

The non-linear term

Finally, we study the non-linear part N(ζ) = 2Ω−2Tf((d d∗ ζ)2). Again, we do this
in multiple steps. First, we estimate d d∗ ζ in terms of Ck,α

cf (Ω2(MB,n)). Secondly,
we work out N(ζ)−N(ξ) using the product rule for Hölder norms, which yields an
explicit error. Finally, we calculate this error on each region separately.

Lemma 5.34. Let ζ ∈ Ck+2,α
cf (MB,n) · ω (or ζ ∈ (Ck+2,α

cf (MB,n) ⊕ Rϕ) · ω when
B ̸= R3). There exists a constant C > 0, independent of ζ and ϵ, such that

∥ d d∗ ζ∥Ck,α
δ (Ω2(MB,n))

≤ C · ∥ζ∥Ck+2,α
δ (MB,n)·ω

when B = R3 or

∥ d d∗ ζ∥Ck,α
δ (Ω2(MB,n))

≤ C · ∥ζ∥(Ck+2,α
δ (MB,n)⊕Rϕ)·ω

when B ̸= R3.

Proof. Consider the case when δ = 0, and expand ζ into ζ =
∑

i ui · ωi. Using that
ωi is closed and self-adjoint with respect to g,

d d∗ ζ = −
∑
i

d ∗g d ∗g(ui · ωi) = −
∑
i

d ∗g dui ∧ ωi = −
∑
i

d ι∇gui
ωi.

The exterior derivative is a bounded linear map between Ck+1,α
cf (Ω1(MB,n)) and

Ck,α
cf (Ω2(MB,n)), and hence it is sufficient to show ι∇gui

ωi and its derivatives are
uniformly bounded. By a similar argument as in Lemma 5.30, ∇gui is of order
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O(Ω2). Because ϕ = ρ on the asymptotic region, the same is true when ui is a
multiple of ϕ. Finally, recall that ω and its derivatives are of order Ω−2 with respect
to gcf and therefore ι∇gui

ωi is uniformly bounded.

Just as in Proposition 5.33, the estimate does not change when we reintroduce the
weights. Hence d d∗ is a uniformly bounded operator.

For any f, g ∈ Ck,α
cf (MB,n), the product rule of Hölder norms implies f · g ∈

Ck,α
cf (MB,n) and ∥f · g∥Ck,α

cf (MB,n)
≤ C∥f∥Ck,α

cf (MB,n)
· ∥g∥Ck,α

cf (MB,n)
for some uniform

constant C. This implies that the wedge product can be viewed as the bounded
linear map

∧ : Ck,α
cf (Ω2(MB,n))× Ck,α

cf (Ω2(MB,n)) → Ck,α
cf (Ω4(MB,n)).

With this version of the Hölder product rule, we can prove the non-linear condition
for the inverse function theorem.

Proposition 5.35. Let N(ζ) = 2Ω−2Λ−1Tf(d d∗ ζ ∧d d∗ ζ). There exists a q > 0

of order O(ϵδ−2) such that for any ζ, ξ ∈ (Ck+2,α
δ (MB,n)·ω)⊗R3 (or (Ck+2,α

δ (MB,n)·
ω ⊕ Rϕ)⊗ R3 when B ̸= R3),

∥N(ζ)−N(ξ)∥(Ck,α
δ (MB,n)·ω)⊗R3 ≤ q · ∥ζ + ξ∥ · ∥ζ − ξ∥,

where ∥ζ± ξ∥ is measured with the (Ck+2,α
δ (MB,n) ·ω)⊗R3 or (Ck+2,α

δ (MB,n) ·ω⊕
Rϕ)⊗ R3 norm respectively.

Proof. Using the ‘identity’ a2−b2 = (a+b)(a−b), the expression of for N(ζ)−N(ξ)

can be rewritten as

N(ζ)−N(ξ) = 2Ω−2Λ−1Tf(d d∗(ζ + ξ) ∧ d d∗(ζ − ξ)).

Using Lemma 5.34 and the product rule, N(ζ)−N(ξ) can be estimated by

N(ζ)−N(ξ) = O(2eδρΩ−2Λ−1Tf(Volgcf )) · ∥ζ + ξ∥ · ∥ζ − ξ∥.

Recall that the map Tf projects the space of 3 by 3 matrices to its symmetric
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traceless subspace. This projection is uniformly bounded, and hence

N(ζ)−N(ξ) = O(2eδρΩ−2Λ−1(Volgcf )) · ∥ζ + ξ∥ · ∥ζ − ξ∥.

Using Equation 11 and that g is hyperkähler outside the gluing region, we estimate
the inverse of Λ, which yields

N(ζ)−N(ξ) = O(eδρΩ2) · ω · ∥ζ + ξ∥ · ∥ζ − ξ∥.

We conclude that q must be of order O(eδρΩ2). We calculate O(eδρΩ2) explicitly for
each region of MB,n, which are given in Definition 5.1. We summarise the estimates
in the following table26:

r → ∞0 4ϵ
2
5 5ϵ

2
5

rAH = R3 rj = R2 r = R1

Ω

ρ

O(eδρΩ2)

√
1+ϵαj

ϵ

log
(

ϵ
1+ϵαj

R3

)
O(ϵδ−2)

r−1
j (h

qj
ϵ )−

1
2

log(rj)

O(rδ−2
j ) ≤ O(ϵδ−2)

1

1

O(1)

(Def. 4.7)
(Def. 4.9)

O(1)

Asymptotic regionNear singularity qj

The parameter q attains its largest value inside the bubbles, and hence q = O(ϵδ−2).

As explained in Section 2.2, our goal is to solve the equation

1

2
Λ−1Tf(ω ∧ ω) + ∆ζ + 2Λ−1Tf(d d∗ ζ ∧ d d∗ ζ) = 0. (6)

According to Proposition 5.29, the constant part F (0) is of order O(ϵ
11−2δ

5 ). Accord-
ing to Proposition 5.33, the linearised operator is invertible with uniform bounded
inverse. By Proposition 5.35, the non-linear part satisfies

∥N(ζ)−N(ξ)∥(Ck,α
δ (MB,n)·ω)⊗R3 ≤ O(ϵδ−2) · ∥ζ + ξ∥ · ∥ζ − ξ∥.

26Again the estimates for a non-fixed point singularity pi are the same as the estimates for a
fixed point singularity qj and we can ignore them.
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Therefore, Theorem 2.15 can be applied if

ϵ
11−2δ

5 ≤ O(ϵ2−δ).

This is indeed true for sufficiently small ϵ, and hence:

Proposition 5.36. For sufficiently small ϵ > 0, there exists a triple of ζi ∈
Ck,α

δ (MB,n) · ω (or ζ ∈ (Ck,α
δ (MB,n)⊕ Rϕ) · ω when B ̸= R3), such that

ωi + 2dd∗ ζi

is an orthonormal triple of closed 2-forms, and the norm of ζi is of order O(ϵ
11−2δ

5 ).

Higher regularity

At last, we need to show ω + 2dd∗ ζ is smooth. For this we use a bootstrapping
argument. Namely, we know that ζ is a Ck+2,α solution of Equation 6, which is of
the form

F (0) + L(ζ) +N(d d∗ ζ, d d∗ ζ) = 0.

Hence any partial derivative ζ̇ ∈ Ck+1,α must satisfy an equation of the form

Ḟ (0) + L̇(ζ) + L(ζ̇) + Ṅ(d d∗ ζ, d d∗ ζ)

+N(d d∗ ζ̇ , d d∗ ζ) +N(d d∗ ζ, d d∗ ζ̇) = 0,

where the dot denotes the partial derivatives of the coefficients. Therefore, there is
some F̃ ∈ Ck,α

loc such that

L(ζ̇) +N(d d∗ ζ̇ , d d∗ ζ) +N(d d∗ ζ, d d∗ ζ̇) = F̃ .

We claim that the operator

L+N(d d∗ . . . , d d∗ ζ) +N(d d∗ ζ, d d∗ . . .) (12)

is a strictly elliptic operator, because the operator norm of N(d d∗ ζ, d d∗ . . .) is
arbitrary small. Indeed, using a similar argument as in Proposition 5.35 and Lemma
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5.34, one can show that

∥N(d d∗ ζ, d d∗ . . .)∥op = O(ϵδ−2) · ∥ζ∥Ck+2,α .

By Proposition 5.36, we know ∥ζ∥Ck+2,α = O(ϵ
11−2δ

5 ), and hence

∥N(d d∗ ζ, d d∗ . . .)∥op = O(ϵ
1
5
+ 3

5
δ).

For sufficiently small ϵ, the operator in Equation 12 is elliptic. Using the local
Schauder estimate, ζ̇ must be an element of Ck+2,α and so ζ ∈ Ck+3,α. Using
induction on k, we conclude:

Theorem 5.37. For sufficiently small ϵ > 0, there exists a smooth triple of
ζi ∈ Ck,α

δ (MB,n) · ω (or ζi ∈ (Ck,α
δ (MB,n)⊕ Rϕ) · ω when B ̸= R3), such that

ωi + 2dd∗ ζi

is a hyperkähler triple.

We finally show the main result of this thesis.

Theorem 1.1. Let L ⊂ R3 be a lattice of rank one or two and consider the
Z2 action on R3/L that is induced by the antipodal map on R3. Let {pi} be a
configuration of n distinct points in (R3/L − Fix(Z2))/Z2. Suppose that n ≤ 4

when R3/L ≃ R2 × S1 and n ≤ 8 when R3/L ≃ R × T 2. Then, there exists
an ϵ0 > 0, such that for all 0 < ϵ < ϵ0 there exist a gravitational instanton
(MR3/L,n, gϵ) with the following properties:

1. For each fixed point of the Z2 action on R3/L, there is a compact set K ⊂
MR3/L,n, such that ϵ−2gϵ approximates the Atiyah-Hitchin metric on K as
ϵ→ 0.

2. For each i ∈ {1, . . . , n}, there is a compact set Ki ⊂MR3/L,n such that ϵ−2gϵ

approximates the Taub-NUT metric on Ki as ϵ→ 0.

3. Away from the singularities, the manifold collapses to (R3/L)/Z2 with
bounded curvature as ϵ converges to zero.

4. Depending on the lattice and n, the asymptotic metric can be classified as
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• ALG*-I∗4−n when dimL = 1 and n < 4,

• ALG 1
2

when dimL = 1 and n = 4,

• ALH*8−n when dimL = 2 and n < 8,

• ALH when dimL = 2 and n = 8.

Proof. Given the data in the theorem, we constructed in Chapter 3 a 4-manifold
MB,n and a 1-parameter family of closed definite triples ω that are approximately
hyperkähler. By theorem 5.37, there exists a smooth ζ ∈ Ω+(MB,n)⊗ R3 such that
ω + 2dd∗ ζ is a smooth hyperkähler triple, which induces a hyperkähler metric on
MB,n. Moreover, our genuine gravitational instanton differs from our approximate
solution with an error of O(ϵ

11−2δ
5 ). Hence, for sufficiently small ϵ, properties 1 to 4

are satisfied.
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